
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9228051/publications.pdf Version: 2024-02-01

KALINA HDISTOVA

#	Article	IF	CITATIONS
1	Antimicrobial Peptides: Successes, Challenges and Unanswered Questions. Journal of Membrane Biology, 2011, 239, 27-34.	1.0	406
2	How Membranes Shape Protein Structure. Journal of Biological Chemistry, 2001, 276, 32395-32398.	1.6	273
3	Structure, Location, and Lipid Perturbations of Melittin at the Membrane Interface. Biophysical Journal, 2001, 80, 801-811.	0.2	264
4	MPEx: A tool for exploring membrane proteins. Protein Science, 2009, 18, 2624-2628.	3.1	238
5	[4] Protein folding in membranes: Determining energetics of peptide-bilayer interactions. Methods in Enzymology, 1998, 295, 62-87.	0.4	233
6	Energetics, stability, and prediction of transmembrane helices11Edited by G. von Heijne. Journal of Molecular Biology, 2001, 312, 927-934.	2.0	229
7	Role of Receptor Tyrosine Kinase Transmembrane Domains in Cell Signaling and Human Pathologies. Biochemistry, 2006, 45, 6241-6251.	1.2	212
8	An amphipathic α-helix at a membrane interface: a structural study using a novel X-ray diffraction method 1 1Edited by D. C. Rees. Journal of Molecular Biology, 1999, 290, 99-117.	2.0	196
9	Folding of β-sheet membrane proteins: a hydrophobic hexapeptide model. Journal of Molecular Biology, 1998, 277, 1091-1110.	2.0	195
10	Mechanism of FGF receptor dimerization and activation. Nature Communications, 2016, 7, 10262.	5.8	192
11	Spontaneous Membrane-Translocating Peptides by Orthogonal High-Throughput Screening. Journal of the American Chemical Society, 2011, 133, 8995-9004.	6.6	173
12	Determination of the Hydrocarbon Core Structure of Fluid Dioleoylphosphocholine (DOPC) Bilayers by X-Ray Diffraction Using Specific Bromination of the Double-Bonds: Effect of Hydration. Biophysical Journal, 1998, 74, 2419-2433.	0.2	159
13	How IGF-1 activates its receptor. ELife, 2014, 3, .	2.8	154
14	Transmembrane helix dimerization: Beyond the search for sequence motifs. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 183-193.	1.4	143
15	Critical Role of Lipid Composition in Membrane Permeabilization by Rabbit Neutrophil Defensins. Journal of Biological Chemistry, 1997, 272, 24224-24233.	1.6	135
16	Measuring the Energetics of Membrane Protein Dimerization in Mammalian Membranes. Journal of the American Chemical Society, 2010, 132, 3628-3635.	6.6	121
17	A Look at Arginine in Membranes. Journal of Membrane Biology, 2011, 239, 49-56.	1.0	107
18	Förster resonance energy transfer in liposomes: Measurements of transmembrane helix dimerization in the native bilayer environment. Analytical Biochemistry, 2005, 340, 154-164.	1.1	105

#	Article	IF	CITATIONS
19	Effect of Bilayer Composition on the Phase Behavior of Liposomal Suspensions Containing Poly(ethylene glycol)-Lipids. Macromolecules, 1995, 28, 7693-7699.	2.2	101
20	FGFR3 Dimer Stabilization Due to a Single Amino Acid Pathogenic Mutation. Journal of Molecular Biology, 2006, 356, 600-612.	2.0	95
21	VEGFR-2 conformational switch in response to ligand binding. ELife, 2016, 5, e13876.	2.8	94
22	Receptor tyrosine kinase transmembrane domains. Cell Adhesion and Migration, 2010, 4, 249-254.	1.1	89
23	Interactions of Monomeric Rabbit Neutrophil Defensins with Bilayers:Â Comparison with Dimeric Human Defensin HNP-2â€. Biochemistry, 1996, 35, 11888-11894.	1.2	88
24	Fully quantified spectral imaging reveals <i>in vivo</i> membrane protein interactions. Integrative Biology (United Kingdom), 2016, 8, 216-229.	0.6	82
25	The FRET Signatures of Noninteracting Proteins in Membranes: Simulations and Experiments. Biophysical Journal, 2014, 106, 1309-1317.	0.2	80
26	Sodium Dodecyl Sulfateâ^'Polyacrylamide Gel Electrophoresis and Förster Resonance Energy Transfer Suggest Weak Interactions between Fibroblast Growth Factor Receptor 3 (FGFR3) Transmembrane Domains in the Absence of Extracellular Domains and Ligandsâ€. Biochemistry, 2005, 44, 352-360.	1.2	72
27	Structure of FGFR3 Transmembrane Domain Dimer: Implications for Signaling and Human Pathologies. Structure, 2013, 21, 2087-2093.	1.6	69
28	Production of Plasma Membrane Vesicles with Chloride Salts and Their Utility as a Cell Membrane Mimetic for Biophysical Characterization of Membrane Protein Interactions. Analytical Chemistry, 2012, 84, 8650-8655.	3.2	68
29	Understanding the FRET Signatures of Interacting Membrane Proteins. Journal of Biological Chemistry, 2017, 292, 5291-5310.	1.6	62
30	The EphA2 receptor is activated through induction of distinct, ligand-dependent oligomeric structures. Communications Biology, 2018, 1, 15.	2.0	62
31	pH-Triggered, Macromolecule-Sized Poration of Lipid Bilayers by Synthetically Evolved Peptides. Journal of the American Chemical Society, 2017, 139, 937-945.	6.6	61
32	Energetics of ErbB1 Transmembrane Domain Dimerization in Lipid Bilayers. Biophysical Journal, 2009, 96, 4622-4630.	0.2	59
33	Highly Efficient Macromolecule-Sized Poration of Lipid Bilayers by a Synthetically Evolved Peptide. Journal of the American Chemical Society, 2014, 136, 4724-4731.	6.6	59
34	The RTK Interactome: Overview and Perspective on RTK Heterointeractions. Chemical Reviews, 2019, 119, 5881-5921.	23.0	59
35	EphA2 Receptor Unliganded Dimers Suppress EphA2 Pro-tumorigenic Signaling. Journal of Biological Chemistry, 2015, 290, 27271-27279.	1.6	58
36	[23] Mechanism of leakage of contents of membrane vesicles determined by fluorescence requenching. Methods in Enzymology, 1997, 278, 474-486.	0.4	56

#	Article	IF	CITATIONS
37	Direct Cytosolic Delivery of Polar Cargo to Cells by Spontaneous Membrane-translocating Peptides. Journal of Biological Chemistry, 2013, 288, 29974-29986.	1.6	52
38	The Extracellular Domain of Fibroblast Growth Factor Receptor 3 Inhibits Ligand-Independent Dimerization. Science Signaling, 2010, 3, ra86.	1.6	51
39	The electrical response of bilayers to the bee venom toxin melittin: Evidence for transient bilayer permeabilization. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1357-1364.	1.4	50
40	Physical–chemical principles underlying RTK activation, and their implications for human disease. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 995-1005.	1.4	49
41	An Experiment-Based Algorithm for Predicting the Partitioning of Unfolded Peptides into Phosphatidylcholine Bilayer Interfacesâ€. Biochemistry, 2005, 44, 12614-12619.	1.2	47
42	Characterization of antimicrobial peptide activity by electrochemical impedance spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2430-2436.	1.4	46
43	Unliganded EphA3 dimerization promoted by the SAM domain. Biochemical Journal, 2015, 471, 101-109.	1.7	45
44	Characterization of Membrane Protein Interactions in Plasma Membrane Derived Vesicles with Quantitative Imaging Förster Resonance Energy Transfer. Accounts of Chemical Research, 2015, 48, 2262-2269.	7.6	45
45	Applications and evolution of melittin, the quintessential membrane active peptide. Biochemical Pharmacology, 2021, 193, 114769.	2.0	45
46	Direct Assessment of the Effect of the Gly380Arg Achondroplasia Mutation on FGFR3 Dimerization Using Quantitative Imaging FRET. PLoS ONE, 2012, 7, e46678.	1.1	45
47	The Achondroplasia Mutation Does Not Alter the Dimerization Energetics of the Fibroblast Growth Factor Receptor 3 Transmembrane Domain. Biochemistry, 2006, 45, 5551-5556.	1.2	44
48	Studies of Receptor Tyrosine Kinase Transmembrane Domain Interactions: The EmEx-FRET Method. Journal of Membrane Biology, 2007, 215, 93-103.	1.0	44
49	The SAM domain inhibits EphA2 interactions in the plasma membrane. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 31-38.	1.9	43
50	Pathogenic Activation of Receptor Tyrosine Kinases in Mammalian Membranes. Journal of Molecular Biology, 2008, 384, 1130-1142.	2.0	42
51	A Membrane-Translocating Peptide Penetrates into Bilayers without Significant Bilayer Perturbations. Biophysical Journal, 2013, 104, 2419-2428.	0.2	42
52	Potent Macromolecule-Sized Poration of Lipid Bilayers by the Macrolittins, A Synthetically Evolved Family of Pore-Forming Peptides. Journal of the American Chemical Society, 2018, 140, 6441-6447.	6.6	41
53	Influence of Applied Potential on the Impedance of Alkanethiol SAMs. Langmuir, 2007, 23, 9681-9685.	1.6	38
54	Quantitative Measurements of Protein Interactions in a Crowded Cellular Environment. Analytical Chemistry, 2008, 80, 5976-5985.	3.2	38

#	Article	IF	CITATIONS
55	Physical Basis behind Achondroplasia, the Most Common Form of Human Dwarfism. Journal of Biological Chemistry, 2010, 285, 30103-30114.	1.6	38
56	FGFR3 Heterodimerization in Achondroplasia, the Most Common Form of Human Dwarfism. Journal of Biological Chemistry, 2011, 286, 13272-13281.	1.6	38
57	Transmembrane Helix Heterodimerization in Lipid Bilayers: Probing the Energetics behind Autosomal Dominant Growth Disorders. Journal of Molecular Biology, 2006, 358, 1-7.	2.0	36
58	FGFR3 Unliganded Dimer Stabilization by the Juxtamembrane Domain. Journal of Molecular Biology, 2015, 427, 1705-1714.	2.0	35
59	The Mechanism of Membrane Permeabilization by Peptides: Still an Enigma. Australian Journal of Chemistry, 2020, 73, 96.	0.5	34
60	Polar residues in transmembrane helices can decrease electrophoretic mobility in polyacrylamide gels without causing helix dimerization. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1321-1331.	1.4	33
61	Effect of a Polymer Cushion on the Electrical Properties and Stability of Surface-Supported Lipid Bilayers. Langmuir, 2010, 26, 3544-3548.	1.6	32
62	Effect of Pathogenic Cysteine Mutations on FGFR3 Transmembrane Domain Dimerization in Detergents and Lipid Bilayers. Biochemistry, 2007, 46, 11039-11046.	1.2	31
63	Glycophorin A transmembrane domain dimerization in plasma membrane vesicles derived from CHO, HEK 293T, and A431 cells. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1829-1833.	1.4	31
64	Uninduced high-yield bacterial expression of fluorescent proteins. Analytical Biochemistry, 2014, 449, 155-157.	1.1	31
65	Engineering nanomolar peptide ligands that differentially modulate EphA2 receptor signaling. Journal of Biological Chemistry, 2019, 294, 8791-8805.	1.6	31
66	The transition model of RTK activation: A quantitative framework for understanding RTK signaling and RTK modulator activity. Cytokine and Growth Factor Reviews, 2019, 49, 23-31.	3.2	31
67	Neutron Diffraction Studies of Fluid Bilayers with Transmembrane Proteins: Structural Consequences of the Achondroplasia Mutation. Biophysical Journal, 2006, 91, 3736-3747.	0.2	30
68	A New Method to Study Heterodimerization of Membrane Proteins and Its Application to Fibroblast Growth Factor Receptors. Journal of Biological Chemistry, 2017, 292, 1288-1301.	1.6	30
69	Mechanism of Action of Peptides That Cause the pH-Triggered Macromolecular Poration of Lipid Bilayers. Journal of the American Chemical Society, 2019, 141, 6706-6718.	6.6	30
70	Chapter 6 Forster Resonance Energy Transfer Measurements of Transmembrane Helix Dimerization Energetics. Methods in Enzymology, 2008, 450, 107-127.	0.4	29
71	The A391E mutation enhances FGFR3 activation in the absence of ligand. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2045-2050.	1.4	29
72	Effect of Thanatophoric Dysplasia Type I Mutations on FGFR3 Dimerization. Biophysical Journal, 2015, 108, 272-278.	0.2	29

#	Article	lF	CITATIONS
73	Synthesis and initial characterization of FGFR3 transmembrane domain: consequences of sequence modifications. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1668, 240-247.	1.4	28
74	Electrical Measurements of Bilayer Membranes Formed by Langmuirâ^'Blodgett Deposition on Single-Crystal Silicon. Langmuir, 2007, 23, 13040-13045.	1.6	28
75	Assembly of the M2 Tetramer Is Strongly Modulated by Lipid Chain Length. Biophysical Journal, 2010, 99, 1810-1817.	0.2	28
76	Consequences of replacing EGFR juxtamembrane domain with an unstructured sequence. Scientific Reports, 2012, 2, 854.	1.6	28
77	A Highly Charged Voltage‣ensor Helix Spontaneously Translocates across Membranes. Angewandte Chemie - International Edition, 2012, 51, 7150-7153.	7.2	28
78	A small peptide promotes EphA2 kinase-dependent signaling by stabilizing EphA2 dimers. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1922-1928.	1.1	28
79	Intracellular Domain Contacts Contribute to Ecadherin Constitutive Dimerization in the Plasma Membrane. Journal of Molecular Biology, 2017, 429, 2231-2245.	2.0	28
80	Dimerization of the Trk receptors in the plasma membrane: effects of their cognate ligands. Biochemical Journal, 2018, 475, 3669-3685.	1.7	28
81	Direct measurements of VEGF–VEGFR2 binding affinities reveal the coupling between ligand binding and receptor dimerization. Journal of Biological Chemistry, 2019, 294, 9064-9075.	1.6	28
82	EGFR forms ligand-independent oligomers that are distinct from the active state. Journal of Biological Chemistry, 2020, 295, 13353-13362.	1.6	28
83	Ligand bias in receptor tyrosine kinase signaling. Journal of Biological Chemistry, 2020, 295, 18494-18507.	1.6	28
84	Testing the limits of rational design by engineering pH sensitivity into membrane-active peptides. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 951-957.	1.4	27
85	High-Throughput Selection of Transmembrane Sequences That Enhance Receptor Tyrosine Kinase Activation. Journal of Molecular Biology, 2011, 412, 43-54.	2.0	26
86	Ebola Virus Delta Peptide Is a Viroporin. Journal of Virology, 2017, 91, .	1.5	26
87	Spectral Förster Resonance Energy Transfer Detection of Protein Interactions in Surface-Supported Bilayers. Langmuir, 2006, 22, 6986-6992.	1.6	25
88	Imaging Forster Resonance Energy Transfer Measurements of Transmembrane Helix Interactions in Lipid Bilayers on a Solid Supportâ€. Langmuir, 2004, 20, 9053-9060.	1.6	24
89	Impedance spectroscopy of bilayer membranes on single crystal silicon. Biointerphases, 2008, 3, FA33-FA40.	0.6	24
90	The Physical Basis of FGFR3 Response to <i>fgf1</i> and <i>fgf2</i> . Biochemistry, 2011, 50, 8576-8582.	1.2	24

#	Article	IF	CITATIONS
91	Interactions of Membrane Active Peptides with Planar Supported Bilayers: An Impedance Spectroscopy Study. Langmuir, 2012, 28, 6088-6096.	1.6	24
92	Reversible blood-brain barrier opening utilizing the membrane active peptide melittin in vitro and in vivo. Biomaterials, 2021, 275, 120942.	5.7	24
93	Quantifying the Interaction between EGFR Dimers and Grb2 in Live Cells. Biophysical Journal, 2017, 113, 1353-1364.	0.2	23
94	Interactions between NRP1 and VEGFR2 molecules in the plasma membrane. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2118-2125.	1.4	23
95	Quantifying the strength of heterointeractions among receptor tyrosine kinases from different subfamilies: Implications for cell signaling. Journal of Biological Chemistry, 2020, 295, 9917-9933.	1.6	23
96	Mechanical disruption of E-cadherin complexes with epidermal growth factor receptor actuates growth factor–dependent signaling. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	23
97	Analytical characterization of plasma membrane-derived vesicles produced via osmotic and chemical vesiculation. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1591-1598.	1.4	22
98	P120 catenin potentiates constitutive E-cadherin dimerization at the plasma membrane and regulates trans binding. Current Biology, 2021, 31, 3017-3027.e7.	1.8	22
99	Specific inhibition of a pathogenic receptor tyrosine kinase by its transmembrane domain. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 253-259.	1.4	21
100	A simple "proximity―correction for Förster resonance energy transfer efficiency determination in membranes using lifetime measurements. Analytical Biochemistry, 2008, 380, 134-136.	1.1	20
101	Single Proteoliposome High-Content Analysis Reveals Differences in the Homo-Oligomerization of GPCRs. Biophysical Journal, 2018, 115, 300-312.	0.2	19
102	Electrically Addressable, Biologically Relevant Surface-Supported Bilayers. Langmuir, 2010, 26, 12054-12059.	1.6	18
103	On-the-resin N-terminal modification of long synthetic peptides. Analytical Biochemistry, 2012, 424, 137-139.	1.1	18
104	Utility of surface-supported bilayers in studies of transmembrane helix dimerization. Journal of Structural Biology, 2009, 168, 53-60.	1.3	17
105	The Biased Ligands NGF and NT-3 Differentially Stabilize Trk-A Dimers. Biophysical Journal, 2021, 120, 55-63.	0.2	16
106	Protein Folding in Membranes: Insights from Neutron Diffraction Studies of a Membrane β-Sheet Oligomer. Biophysical Journal, 2008, 94, 492-505.	0.2	15
107	FGFR3 Transmembrane Domain Interactions Persist in the Presence of Its Extracellular Domain. Biophysical Journal, 2013, 105, 165-171.	0.2	15
108	Strong dimerization of wild-type ErbB2/Neu transmembrane domain and the oncogenic Val664Glu mutant in mammalian plasma membranes. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2326-2330.	1.4	15

#	Article	IF	CITATIONS
109	Effect of the achondroplasia mutation on FGFR3 dimerization and FGFR3 structural response to fgf1 and fgf2: A quantitative FRET study in osmotically derived plasma membrane vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1436-1442.	1.4	15
110	Revisiting a controversy: The effect of EGF on EGFR dimer stability. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183015.	1.4	14
111	A peptide for transcellular cargo delivery: Structure-function relationship and mechanism of action. Journal of Controlled Release, 2020, 324, 633-643.	4.8	14
112	Increased expression of the integral membrane protein ErbB2 in Chinese hamster ovary cells expressing the anti-apoptotic gene Bcl-xL. Protein Expression and Purification, 2009, 67, 41-47.	0.6	13
113	Pathogenic Cysteine Removal Mutations in FGFR Extracellular Domains Stabilize Receptor Dimers and Perturb the TM Dimer Structure. Journal of Molecular Biology, 2016, 428, 3903-3910.	2.0	12
114	Multiple Consequences of a Single Amino Acid Pathogenic RTK Mutation: The A391E Mutation in FGFR3. PLoS ONE, 2013, 8, e56521.	1.1	11
115	Enhancing the membrane activity of Piscidin 1 through peptide metallation and the presence of oxidized lipid species: Implications for the unification of host defense mechanisms at lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183236.	1.4	11
116	pH-triggered pore-forming peptides with strong composition-dependent membrane selectivity. Biophysical Journal, 2021, 120, 618-630.	0.2	11
117	Probing Membrane Protein Association Using Concentrationâ€Dependent Number and Brightness. Angewandte Chemie - International Edition, 2021, 60, 6503-6508.	7.2	11
118	Pondering the mechanism of receptor tyrosine kinase activation: The case for ligand-specific dimer microstate ensembles. Current Opinion in Structural Biology, 2021, 71, 193-199.	2.6	11
119	Membrane-selective Nanoscale Pores in Liposomes by a Synthetically Evolved Peptide: Implications for Triggered Release. Nanoscale, 2021, 13, 12185-12197.	2.8	11
120	The biophysical basis of receptor tyrosine kinase ligand functional selectivity: Trk-B case study. Biochemical Journal, 2020, 477, 4515-4526.	1.7	11
121	Regulation of the EphA2 receptor intracellular region by phosphomimetic negative charges in the kinase-SAM linker. Nature Communications, 2021, 12, 7047.	5.8	11
122	Effect of the G375C and G346E Achondroplasia Mutations on FGFR3 Activation. PLoS ONE, 2012, 7, e34808.	1.1	10
123	Hill Coefficient Analysis of Transmembrane Helix Dimerization. Journal of Membrane Biology, 2009, 230, 49-55.	1.0	9
124	A cancer mutation promotes EphA4 oligomerization and signaling by altering the conformation of the SAM domain. Journal of Biological Chemistry, 2021, 297, 100876.	1.6	9
125	Bias-Dependent Admittance in Hybrid Bilayer Membranes. Langmuir, 2006, 22, 7156-7158.	1.6	8
126	Interaction between the transmembrane domains of neurotrophin receptors p75 and TrkA mediates their reciprocal activation. Journal of Biological Chemistry, 2021, 297, 100926.	1.6	8

#	Article	IF	CITATIONS
127	Ligands with different dimeric configurations potently activate the EphA2 receptor and reveal its potential for biased signaling. IScience, 2022, 25, 103870.	1.9	8
128	Cooperative interactions between VEGFR2 extracellular Ig-like subdomains ensure VEGFR2 dimerization. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2559-2567.	1.1	7
129	Human herpesvirus 8 molecular mimicry of ephrin ligands facilitates cell entry and triggers EphA2 signaling. PLoS Biology, 2021, 19, e3001392.	2.6	7
130	Surface supported bilayer platform for studies of lateral association of proteins in membranes (Mini) Tj ETQq0 0	0 rgBT /O [.] 0.6	verlock 10 Tf :
131	Viewing the Bilayer Hydrocarbon Core Using Neutron Diffraction. Journal of Membrane Biology, 2009, 227, 123-131.	1.0	5
132	Rational Modulation of pH-Triggered Macromolecular Poration by Peptide Acylation and Dimerization. Journal of Physical Chemistry B, 2020, 124, 8835-8843.	1.2	3
133	Interactions between Ligand-Bound EGFR and VEGFR2. Journal of Molecular Biology, 2021, 433, 167006.	2.0	3
134	Probing Membrane Protein Association Using Concentrationâ€Dependent Number and Brightness. Angewandte Chemie, 2021, 133, 6577-6582.	1.6	2
135	Interfacially active peptides and proteins. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2139.	1.4	1
136	Neural network strategies for plasma membrane selection in fluorescence microscopy images. Biophysical Journal, 2021, 120, 2374-2385.	0.2	1
137	How Can We Fully Realize the Potential of Mathematical and Biological Models to Reintegrate Biology?. Integrative and Comparative Biology, 2021, , .	0.9	1
138	Quantitative characterization of tetraspanin 8 homointeractions in the plasma membrane. Biochemical Journal, 2021, 478, 3643-3654.	1.7	1
139	Quantification of the Effects of Mutations on Receptor Tyrosine Kinase (RTK) Activation in Mammalian Cells. Methods in Molecular Biology, 2015, 1233, 81-87.	0.4	1
140	Receptor Tyrosine Kinases. , 2021, , .		1
141	Direct Quantification of Ligandâ€Induced Lipid and Protein Microdomains with Distinctive Signaling Properties**. ChemSystemsChem, 2022, 4, .	1.1	1
142	Of Rafts and Lipid Chain Lengths. Biophysical Journal, 2015, 108, 2096.	0.2	0
143	Interactions between membrane receptors in cellular membranes. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1397.	1.4	0
144	Methods Ligand Binding to Receptor Tyrosine Kinases: Thermodynamic Cycles and Experimental Approaches. , 2021, , 766-779.		0

#	Article	IF	CITATIONS
145	Effect of the Ala391Glu mutation on FGFR3 activation in cellular membranes. FASEB Journal, 2009, 23, LB284.	0.2	0
146	Effect of short transmembrane peptides on the activation and dimerization of a FGFR3 pathogenic mutant. FASEB Journal, 2009, 23, LB234.	0.2	0
147	Effect of osmotic stress on live cell plasma membranes, probed via Laurdan general polarization measurements. Biophysical Journal, 2022, 121, 2411-2418.	0.2	Ο