
Cecilia Gotor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9227206/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Persulfidation is the mechanism underlying sulfide-signaling of autophagy. Autophagy, 2022, 18, 695-697.	9.1	11
2	Hydrogen Sulfide: A Key Role in Autophagy Regulation from Plants to Mammalians. Antioxidants, 2022, 11, 327.	5.1	8
3	Hydroxynitrile lyase defends Arabidopsis against <i>Tetranychus urticae</i> . Plant Physiology, 2022, 189, 2244-2258.	4.8	9
4	Effect of cadmium in the microalga Chlorella sorokiniana: A proteomic study. Ecotoxicology and Environmental Safety, 2021, 207, 111301.	6.0	44
5	Hydrogen sulfide, a signaling molecule in plant stress responses. Journal of Integrative Plant Biology, 2021, 63, 146-160.	8.5	114
6	H2S action in plant life cycle. Plant Growth Regulation, 2021, 94, 1-9.	3.4	16
7	Mutation in Arabidopsis β-cyanoalanine synthase overcomes NADPH oxidase action in response to pathogens. Journal of Experimental Botany, 2021, 72, 4535-4547.	4.8	8
8	Label-Free Quantitative Proteomic Analysis of Nitrogen Starvation in Arabidopsis Root Reveals New Aspects of H2S Signaling by Protein Persulfidation. Antioxidants, 2021, 10, 508.	5.1	34
9	Biochemical Characterization of the Amylase Activity from the New Haloarchaeal Strain Haloarcula sp. HS Isolated in the Odiel Marshlands. Biology, 2021, 10, 337.	2.8	9
10	Persulfidation of ATG18a regulates autophagy under ER stress in <i>Arabidopsis</i> . Proceedings of the United States of America, 2021, 118, .	7.1	50
11	Hydrogen sulfide-linked persulfidation of ABI4 controls ABA responses through the transactivation of MAPKKK18 in Arabidopsis. Molecular Plant, 2021, 14, 921-936.	8.3	67
12	Hydrogen sulfide signaling in plant adaptations to adverse conditions: molecular mechanisms. Journal of Experimental Botany, 2021, 72, 5893-5904.	4.8	55
13	Activation of Endogenous H ₂ S Biosynthesis or Supplementation with Exogenous H ₂ S Enhances Adipose Tissue Adipogenesis and Preserves Adipocyte Physiology in Humans. Antioxidants and Redox Signaling, 2021, 35, 319-340.	5.4	18
14	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlocl	₹ 10 Jf 50 2	222 Td (editio 1,430
15	Abscisic acidâ€triggered guard cell <scp>l</scp> â€cysteine <i>desulfhydrase</i> function and in situ hydrogen sulfide production contributes to heme oxygenaseâ€modulated stomatal closure. Plant, Cell and Environment, 2020, 43, 624-636.	5.7	57
16	Abscisic Acid-Triggered Persulfidation of the Cys Protease ATG4 Mediates Regulation of Autophagy by Sulfide. Plant Cell, 2020, 32, 3902-3920.	6.6	68
17	Hydrogen Sulfide: From a Toxic Molecule to a Key Molecule of Cell Life. Antioxidants, 2020, 9, 621.	5.1	83

18Current approaches for detection of hydrogen sulfide and persulfidation in biological systems. Plant5.82018Physiology and Biochemistry, 2020, 155, 367-373.5.820

#	Article	IF	CITATIONS
19	Dataset for proteomic analysis of Chlorella sorokiniana cells under cadmium stress. Data in Brief, 2020, 33, 106544.	1.0	0
20	Persulfidation-based Modification of Cysteine Desulfhydrase and the NADPH Oxidase RBOHD Controls Guard Cell Abscisic Acid Signaling. Plant Cell, 2020, 32, 1000-1017.	6.6	183
21	Multilevel Regulation of Peroxisomal Proteome by Post-Translational Modifications. International Journal of Molecular Sciences, 2019, 20, 4881.	4.1	38
22	Signaling by hydrogen sulfide and cyanide through post-translational modification. Journal of Experimental Botany, 2019, 70, 4251-4265.	4.8	116
23	Cadmium induces reactive oxygen speciesâ€dependent pexophagy in <i>Arabidopsis</i> leaves. Plant, Cell and Environment, 2019, 42, 2696-2714.	5.7	30
24	HCN Regulates Cellular Processes through Posttranslational Modification of Proteins by <i>S-</i> cyanylation. Plant Physiology, 2019, 179, 107-123.	4.8	43
25	Ã-Â;½-Cyanoalanine Synthase Action in Root Hair Elongation is Exerted at Early Steps of the Root Hair Elongation Pathway and is Independent of Direct Cyanide Inactivation of NADPH Oxidase. Plant and Cell Physiology, 2018, 59, 1072-1083.	3.1	27
26	Hydrogen Sulfide Signaling in Plants: Emerging Roles of Protein Persulfidation. Frontiers in Plant Science, 2018, 9, 1369.	3.6	205
27	Role of mitochondrial cyanide detoxification in Arabidopsis root hair development. Plant Signaling and Behavior, 2018, 13, e1537699.	2.4	10
28	Hydrogen Sulfide Regulates the Cytosolic/Nuclear Partitioning of Glyceraldehyde-3-Phosphate Dehydrogenase by Enhancing its Nuclear Localization. Plant and Cell Physiology, 2017, 58, 983-992.	3.1	78
29	Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in Arabidopsis. Journal of Experimental Botany, 2017, 68, 4915-4927.	4.8	233
30	Negative regulation of autophagy by sulfide in Arabidopsis thaliana is independent of reactive oxygen species. Plant Physiology, 2016, 171, pp.00110.2016.	4.8	50
31	Advances in Plant Sulfur Metabolism and Signaling. Progress in Botany Fortschritte Der Botanik, 2016, , 45-66.	0.3	1
32	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
33	Regulation of Autophagy by Hydrogen Sulfide. Signaling and Communication in Plants, 2016, , 53-75.	0.7	2
34	<i>S</i> -Sulfhydration: A Cysteine Posttranslational Modification in Plant Systems. Plant Physiology, 2015, 168, 334-342.	4.8	247
35	Signaling in the plant cytosol: cysteine or sulfide?. Amino Acids, 2015, 47, 2155-2164.	2.7	79
36	Assessing the transcriptional regulation of L-cysteine desulfhydrase 1 in Arabidopsis thaliana. Frontiers in Plant Science, 2014, 5, 683.	3.6	18

#	Article	IF	CITATIONS
37	Beyond toxicity. Plant Signaling and Behavior, 2014, 9, e27612.	2.4	19
38	The <scp>TRANSPLANTA</scp> collection of <scp>A</scp> rabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. Plant Journal, 2014, 77, 944-953.	5.7	104
39	Cysteine and Cysteine-Related Signaling Pathways in Arabidopsis thaliana. Molecular Plant, 2014, 7, 264-276.	8.3	223
40	Hydrogen Sulfide Generated by <scp>l</scp> -Cysteine Desulfhydrase Acts Upstream of Nitric Oxide to Modulate Abscisic Acid-Dependent Stomatal Closure Â. Plant Physiology, 2014, 166, 2065-2076.	4.8	238
41	Sulfide as a signaling molecule in autophagy. Autophagy, 2013, 9, 609-611.	9.1	68
42	Transient Transcriptional Regulation of the CYS-C1 Gene and Cyanide Accumulation upon Pathogen Infection in the Plant Immune Response Â. Plant Physiology, 2013, 162, 2015-2027.	4.8	39
43	L-Cysteine Desulfhydrase 1 modulates the generation of the signaling molecule sulfide in plant cytosol. Plant Signaling and Behavior, 2013, 8, e24007.	2.4	54
44	S-sulfocysteine synthase function in sensing chloroplast redox status. Plant Signaling and Behavior, 2013, 8, e23313.	2.4	17
45	Photosynthetic Adaptation to Length of Day Is Dependent on <i>S</i> -Sulfocysteine Synthase Activity in the Thylakoid Lumen Â. Plant Physiology, 2012, 160, 274-288.	4.8	38
46	Cysteine-Generated Sulfide in the Cytosol Negatively Regulates Autophagy and Modulates the Transcriptional Profile in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 4621-4634.	6.6	188
47	Mitochondrial Sulfide Detoxification Requires a Functional Isoform O-Acetylserine(thiol)lyase C in Arabidopsis thaliana. Molecular Plant, 2012, 5, 1217-1226.	8.3	55
48	Cysteine homeostasis plays an essential role in plant immunity. New Phytologist, 2012, 193, 165-177.	7.3	153
49	Inhibition of Arabidopsis O-Acetylserine(thiol)lyase A1 by Tyrosine Nitration. Journal of Biological Chemistry, 2011, 286, 578-586.	3.4	58
50	Impact of sulfur starvation on cysteine biosynthesis in T-DNA mutants deficient for compartment-specific serine-acetyltransferase. Amino Acids, 2010, 39, 1029-1042.	2.7	19
51	Mitochondrial β-Cyanoalanine Synthase Is Essential for Root Hair Formation in <i>Arabidopsis thaliana</i> Â. Plant Cell, 2010, 22, 3268-3279.	6.6	110
52	<i>Arabidopsis</i> Â <i>S</i> -Sulfocysteine Synthase Activity Is Essential for Chloroplast Function and Long-Day Light-Dependent Redox Control. Plant Cell, 2010, 22, 403-416.	6.6	79
53	An <i>O</i> -Acetylserine(thiol)lyase Homolog with <scp>l</scp> -Cysteine Desulfhydrase Activity Regulates Cysteine Homeostasis in Arabidopsis. Plant Physiology, 2010, 152, 656-669.	4.8	315
54	Low abundance does not mean less importance in cysteine metabolism. Plant Signaling and Behavior, 2010, 5, 1028-1030.	2.4	28

#	Article	IF	CITATIONS
55	Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis in <i>Arabidopsis</i> . Plant, Cell and Environment, 2009, 32, 349-367.	5.7	139
56	Implications of cysteine metabolism in the heavy metal response in Trichoderma harzianum and in three Fusarium species. Chemosphere, 2009, 76, 48-54.	8.2	33
57	Knocking Out Cytosolic Cysteine Synthesis Compromises the Antioxidant Capacity of the Cytosol to Maintain Discrete Concentrations of Hydrogen Peroxide in Arabidopsis Â. Plant Physiology, 2008, 147, 562-572.	4.8	92
58	Cytosolic cysteine in redox signaling. Plant Signaling and Behavior, 2008, 3, 880-881.	2.4	21
59	Analysis of Cytosolic and Plastidic Serine Acetyltransferase Mutants and Subcellular Metabolite Distributions Suggests Interplay of the Cellular Compartments for Cysteine Biosynthesis in Arabidopsis. Plant, Cell and Environment, 2008, 32, 349-67.	5.7	69
60	Temperature-dependent endogenous oxygen concentration regulates microsomal oleate desaturase in developing sunflower seeds. Journal of Experimental Botany, 2007, 58, 3171-3181.	4.8	87
61	Molecular links between metals in the environment and plant sulfur metabolism. Plant Ecophysiology, 2007, , 169-195.	1.5	9
62	Evaluation of the Metal Phytoextraction Potential of Crop Legumes. Regulation of the Expression of Oâ€Acetylserine (Thiol)Lyase under Metal Stress. Plant Biology, 2007, 9, 672-681.	3.8	45
63	Leaf hairs influence phytopathogenic fungus infection and confer an increased resistance when expressing a Trichoderma Â-1,3-glucanase. Journal of Experimental Botany, 2006, 57, 3911-3920.	4.8	76
64	A versatile promoter for the expression of proteins in glandular and non-glandular trichomes from a variety of plants. Journal of Experimental Botany, 2005, 56, 2487-2494.	4.8	32
65	Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnology Journal, 2004, 2, 469-476.	8.3	182
66	The serine acetyltransferase gene family in Arabidopsis thaliana and the regulation of its expression by cadmium. Plant Molecular Biology, 2003, 51, 589-598.	3.9	97
67	Nuclear micro-probe analysis of Arabidopsis thaliana leaves. Nuclear Instruments & Methods in Physics Research B, 2003, 210, 401-406.	1.4	49
68	The sac Mutants of Chlamydomonas reinhardtii Reveal Transcriptional and Posttranscriptional Control of Cysteine Biosynthesis. Plant Physiology, 2002, 130, 2076-2084.	4.8	77
69	Cadmium localization and quantification in the plant Arabidopsis thaliana using micro-PIXE. Nuclear Instruments & Methods in Physics Research B, 2002, 189, 494-498.	1.4	56
70	6Fe9-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation. International Journal of Hydrogen Energy, 2002, 27, 1431-1439.	7.1	130
71	Salt regulation of O-acetylserine(thiol)lyase in Arabidopsis thaliana and increased tolerance in yeast. Plant Physiology and Biochemistry, 2001, 39, 643-647.	5.8	33
72	The Cytosolic O-Acetylserine(thiol)lyase Gene Is Regulated by Heavy Metals and Can Function in Cadmium Tolerance. Journal of Biological Chemistry, 2001, 276, 9297-9302.	3.4	173

#	Article	IF	CITATIONS
73	Title is missing!. Plant and Soil, 2000, 221, 59-65.	3.7	2
74	Homology predicted structure and functional interaction of ferredoxin from the eukaryotic alga Chlamydomonas reinhardtii with nitrite reductase and glutamate synthase. Journal of Biological Inorganic Chemistry, 2000, 5, 713-719.	2.6	23
75	Glutathione biosynthesis in Arabidopsis trichome cells. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11108-11113.	7.1	162
76	Cysteine biosynthesis in Chlamydomonas reinhardtii . Molecular cloning and regulation of O-acetylserine(thiol)lyase. FEBS Journal, 1999, 264, 848-853.	0.2	27
77	Salt-specific regulation of the cytosolic O-acetylserine(thiol)lyase gene from Arabidopsis thaliana is dependent on abscisic acid. Plant Molecular Biology, 1999, 40, 729-736.	3.9	87
78	Residue GLU-91 of chlamydomonas reinhardtii ferredoxin is essential for the reaction of ferredoxin-nitrite reductase and ferredoxin-glutamate synthase. , 1998, , 1923-1926.		0
79	Critical Residues of Chlamydomonas reinhardtii Ferredoxin for Interaction with Nitrite Reductase and Glutamate Synthase Revealed by Site-Directed Mutagenesis. FEBS Journal, 1997, 250, 364-368.	0.2	28
80	Tissue-specific expression of ATCYS-3A, a gene encoding the cytosolic isoform of O-acetylserine(thiol)lyase in Arabidopsis. Plant Journal, 1997, 11, 347-352.	5.7	36
81	Isolation and analysis of the soybean SGA2 gene (cDNA), encoding a new member of the plant G-protein family of signal transducers. Plant Molecular Biology, 1996, 32, 1227-1234.	3.9	32
82	Isolation of a New Member of the Soybean Kunitz-Type Proteinase Inhibitors. Plant Physiology, 1995, 107, 1015-1016.	4.8	12
83	A new member of the cytosolicO-acetylserine(thiol)lyase gene family inArabidopsis thaliana. FEBS Letters, 1995, 363, 1-5.	2.8	67
84	Organ-Specific Expression of O-Acetylserine(Thiol)Lyase in Arabidopsis thaliana. , 1995, , 2559-2562.		0
85	Temperature-conditional nuclear mutation of Chlamydomonas reinhardtii decreases the CO2/O2 specificity of chloroplast ribulosebisphosphate carboxylase/oxygenase. Planta, 1994, 193, 313.	3.2	10
86	Analysis of three tissue-specific elements from the wheat Cab-1 enhancer. Plant Journal, 1993, 3, 509-518.	5.7	17
87	G-proteins in etiolated Avena seedlings Possible phytochrome regulation. FEBS Letters, 1991, 282, 341-346.	2.8	84
88	Immunological studies of ferredoxin-nitrite reductases and ferredoxin-glutamate synthases from photosynthetic organisms. Archives of Microbiology, 1990, 153, 230-234.	2.2	10
89	Functional properties of purified ferredoxin-glutamate synthase from Chlamydomon as reinhardtii. Phytochemistry, 1990, 29, 711-717.	2.9	11
90	Antigenic similarities between ferredoxin-dependent nitrite reductase and glutamate synthase fromChlamydomonas reinhardtii. BBA - Proteins and Proteomics, 1988, 957, 152-157.	2.1	20

#	Article	IF	CITATIONS
91	STUDIES ON THE in vitro O2-DEPENDENT INACTIVATION OF NADH-GLUTAMATE SYNTHASE FROM Chlamydomonas reinhardii STIMULATED BY FLAVINS. Photochemistry and Photobiology, 1987, 46, 353-358.	2.5	8
92	Ferredoxin-glutamate synthase from Chlamydomonas reinhardii. Prosthetic groups and preliminary studies of mechanism. International Journal of Biochemistry & Cell Biology, 1986, 18, 531-535.	0.5	37
93	A Persulfidation-Based Protein Modification Controls Guard Cell ABA Signaling. SSRN Electronic Journal, 0, , .	0.4	2