Rudi van Eldik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9226334/publications.pdf

Version: 2024-02-01

347 papers 9,029 citations

44069 48 h-index 70 g-index

386 all docs

386 docs citations

386 times ranked

6880 citing authors

#	Article	IF	Citations
1	Hydration and Water Exchange of Zinc(II) Ions. Application of Density Functional Theory. Journal of the American Chemical Society, 1997, 119, 7843-7850.	13.7	184
2	Gutmann Donor and Acceptor Numbers for Ionic Liquids. Chemistry - A European Journal, 2012, 18, 10969-10982.	3.3	168
3	Electronic Tuning of the Lability of Pt(II) Complexes through π-Acceptor Effects. Correlations between Thermodynamic, Kinetic, and Theoretical Parameters. Inorganic Chemistry, 2003, 42, 1688-1700.	4.0	156
4	Kinetics, Mechanism, and Spectroscopy of the Reversible Binding of Nitric Oxide to Aquated Iron(II). An Undergraduate Text Book Reaction Revisited. Inorganic Chemistry, 2002, 41, 4-10.	4.0	146
5	Understanding chemical reaction mechanisms in ionic liquids: successes and challenges. Chemical Society Reviews, 2011, 40, 272-290.	38.1	145
6	Mechanistic Studies on the Reversible Binding of Nitric Oxide to Metmyoglobin. Journal of the American Chemical Society, 2001, 123, 285-293.	13.7	137
7	Kinetics and Mechanism of the Reversible Binding of Nitric Oxide to Reduced Cobalamin B12r(Cob(II)alamin). Journal of the American Chemical Society, 2001, 123, 9780-9791.	13.7	131
8	Cyclometalated Analogues of Platinum Terpyridine Complexes: Kinetic Study of the Strong σ-Donor Cis and Trans Effects of Carbon in the Presence of a π-Acceptor Ligand Backbone. Inorganic Chemistry, 2003, 42, 6528-6538.	4.0	122
9	Drug Metabolism by Cytochrome P450 Enzymes: What Distinguishes the Pathways Leading to Substrate Hydroxylation Over Desaturation?. Chemistry - A European Journal, 2015, 21, 9083-9092.	3.3	116
10	Metal ion-catalyzed oxidative degradation of Orange II by H ₂ O ₂ . High catalytic activity of simple manganese salts. New Journal of Chemistry, 2009, 33, 34-49.	2.8	115
11	Controlling the Lability of Square-Planar PtII Complexes through Electronic Communication between Ĭ€-Acceptor Ligands. Angewandte Chemie - International Edition, 2001, 40, 1680-1683.	13.8	113
12	Guest Exchange Dynamics in an M4L6Tetrahedral Host§. Journal of the American Chemical Society, 2006, 128, 1324-1333.	13.7	109
13	New Mechanistic Aspects of the Fenton Reaction. Chemistry - A European Journal, 2009, 15, 8303-8309.	3.3	98
14	Mechanistic studies on the reactions of platinum(ii) complexes with nitrogen- and sulfur-donor biomolecules. Dalton Transactions, 2012, 41, 12329.	3.3	98
15	Mechanistic studies on the formation of Pt(II) hydroformylation catalysts in imidazolium-based ionic liquids. Journal of Organometallic Chemistry, 2005, 690, 3567-3576.	1.8	94
16	Tuning the Reversible Binding of NO to Iron(II) Aminocarboxylate and Related Complexes in Aqueous Solution. European Journal of Inorganic Chemistry, 2001, 2001, 491-501.	2.0	85
17	To be or not to be NO in coordination chemistry? A mechanistic approach. Coordination Chemistry Reviews, 2002, 230, 263-282.	18.8	83
18	Fundamental signatures of short- and long-range electron transfer for the blue copper protein azurin at Au/SAM junctions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2757-2762.	7.1	76

#	Article	IF	Citations
19	Triggering Water Exchange Mechanisms via Chelate Architecture. Shielding of Transition Metal Centers by Aminopolycarboxylate Spectator Ligands. Journal of the American Chemical Society, 2008, 130, 14556-14569.	13.7	72
20	Aquacobalamin (Vitamin B12a) Does Not Bind NO in Aqueous Solution. Nitrite Impurities Account for Observed Reaction. Inorganic Chemistry, 2000, 39, 2018-2019.	4.0	71
21	Kinetics, mechanism and equilibrium studies on the substitution reactions of Pd(II) in reference to Pt(II) complexes with bio-molecules. Coordination Chemistry Reviews, 2015, 292, 91-106.	18.8	71
22	Kinetics and mechanism of the reaction of chelated Pd(ii) complexes with thiols in acidic aqueous solution. Synthesis and crystal structure of [Pd(bpma)Cl]Cl·H2O (bpma = bis(2-pyridylmethyl)amine). Dalton Transactions RSC, 2002, , 951.	2.3	70
23	Complex-formation reactions and stability constants for mixed-ligand complexes of diaqua(2-picolylamine)palladium(ii) with some bio-relevant ligands. Dalton Transactions, 2003, , 1425-1432.	3.3	68
24	Effect of Chelate Dynamics on Water Exchange Reactions of Paramagnetic Aminopolycarboxylate Complexes. Inorganic Chemistry, 2008, 47, 5702-5719.	4.0	67
25	Water Exchange Controls the Complex-Formation Mechanism of Water-Soluble Iron(III) Porphyrins: Conclusive Evidence for Dissociative Water Exchange from a High-Pressure17O NMR Study. Angewandte Chemie - International Edition, 2001, 40, 1678-1680.	13.8	66
26	Mechanistic studies on the oxidative degradation of Orange II by peracetic acid catalyzed by simple manganese(<scp>ii</scp>) salts. Tuning the lifetime of the catalyst. New Journal of Chemistry, 2012, 36, 732-748.	2.8	65
27	Influence of Chelate Effects on the Water-Exchange Mechanism of Polyaminecarboxylate Complexes of Iron(III). Inorganic Chemistry, 2001, 40, 3670-3676.	4.0	64
28	Redox cycling in the activation of peroxides by iron porphyrin and manganese complexes. †Catching†catalytic active intermediates. Coordination Chemistry Reviews, 2016, 306, 483-509.	18.8	63
29	Release of NO from Reduced Nitroprusside Ion. Iron-Dinitrosyl Formation and NO-Disproportionation Reactions. Inorganic Chemistry, 2005, 44, 2781-2790.	4.0	61
30	Low-Temperature Rapid-Scan Detection of Reactive Intermediates in Epoxidation Reactions Catalyzed by a New Enzyme Mimic of Cytochrome P450. Journal of the American Chemical Society, 2007, 129, 12473-12479.	13.7	61
31	Novel Iron(III) Porphyrazine Complex. Complex Speciation and Reactions with NO and H ₂ O ₂ . Inorganic Chemistry, 2008, 47, 2994-3013.	4.0	61
32	A highâ€pressure NMR probehead for measurements at 400 MHz. Review of Scientific Instruments, 1994, 65, 882-886.	1.3	60
33	Mechanistic Information on the Reversible Binding of NO to Selected Iron(II) Chelates from Activation Parameters. Inorganic Chemistry, 2002, 41, 2565-2573.	4.0	60
34	Substrate Binding Favors Enhanced NO Binding to P450cam. Journal of the American Chemical Society, 2004, 126, 4181-4191.	13.7	58
35	Mechanistic Studies on the Binding of Nitric Oxide to a Synthetic Hemeâ^'Thiolate Complex Relevant to Cytochrome P450. Journal of the American Chemical Society, 2005, 127, 5360-5375.	13.7	57
36	Mechanistic studies on versatile metal-assisted hydrogen peroxide activation processes for biomedical and environmental incentives. Coordination Chemistry Reviews, 2016, 327-328, 143-165.	18.8	57

#	Article	IF	CITATIONS
37	Mechanistic Studies on Peroxide Activation by a Water-Soluble Iron(III)–Porphyrin: Implications for OO Bond Activation in Aqueous and Nonaqueous Solvents. Chemistry - A European Journal, 2007, 13, 4873-4883.	3.3	56
38	Temperature- and pressure-dependent stopped-flow kinetic studies of jack bean urease. Implications for the catalytic mechanism. Journal of Biological Inorganic Chemistry, 2012, 17, 1123-1134.	2.6	56
39	Searching for Stable, Five-Coordinate Aquated Al(III) Species. Water Exchange Mechanism and Effect of pH. Inorganic Chemistry, 2007, 46, 1112-1122.	4.0	54
40	Ligand Effects on the Kinetics of the Reversible Binding of NO to Selected Aminocarboxylato Complexes of Iron(II) in Aqueous Solution. European Journal of Inorganic Chemistry, 2001, 2001, 2317-2325.	2.0	53
41	pH Controls the Rate and Mechanism of Nitrosylation of Water-Soluble FellIPorphyrin Complexes. Journal of the American Chemical Society, 2005, 127, 13312-13315.	13.7	53
42	Direct Comparison of the Reactivity of Model Complexes for Compounds 0, I, and II in Oxygenation, Hydrogenâ€Abstraction, and Hydrideâ€Transfer Processes. Chemistry - A European Journal, 2009, 15, 13435-13440.	3.3	53
43	The reduction of (lmH)[trans-RulllCl4(dmso)(lm)] under physiological conditions: preferential reaction of the reduced complex with human serum albumin. Journal of Biological Inorganic Chemistry, 2008, 13, 909-918.	2.6	52
44	Kinetics and mechanism of the reactions of $[Pt(terpy)H2O]2+$ with thiols in acidic aqueous solution. Synthesis and crystal structure of $[Pt(terpy)(tu)](ClO4)2$ (tu = thiourea). Dalton Transactions RSC, 2002, , 2825.	2.3	50
45	Thermodynamics and kinetics of Rulll(edta) as an efficient scavenger for nitric oxide in aqueous solution. Dalton Transactions RSC, 2002, , 941-950.	2.3	50
46	Which Oxidant Is Really Responsible for P450 Model Oxygenation Reactions? A Kinetic Approach. Angewandte Chemie - International Edition, 2008, 47, 5238-5242.	13.8	50
47	Transition-State Effects of Ionic Liquids in Substitution Reactions of PtII Complexes. Angewandte Chemie - International Edition, 2005, 44, 6033-6038.	13.8	49
48	Evidence for Associative Ligand Exchange Processes on Solvated Lithium Cations. Inorganic Chemistry, 2004, 43, 8227-8229.	4.0	48
49	Mnllâ€"A fascinating oxidation catalyst: Mechanistic insight into the catalyzed oxidative degradation of organic dyes by H2O2. Applied Catalysis B: Environmental, 2010, 95, 179-191.	20.2	48
50	Role of π-Acceptor Effects in Controlling the Lability of Novel Monofunctional Pt(II) and Pd(II) Complexes: Crystal Structure of [Pt(tripyridinedimethane)Cl]Cl. Inorganic Chemistry, 2012, 51, 1516-1529.	4.0	48
51	Structural and mechanistic information on the reaction of bicarbonate with Cu(II) and Zn(II) complexes of tris(2-aminoethyl)amine. Identification of intermediate and product species. Dalton Transactions RSC, 2001, , 1593-1600.	2.3	47
52	Substitution versus redox reactions of gold(<scp>iii</scp>) complexes with <scp>I</scp> -cysteine, <scp>I</scp> -methionine and glutathione. Dalton Transactions, 2014, 43, 3911-3921.	3.3	47
53	Kinetic and Mechanistic Studies on the Reaction of Nitric Oxide with a Water-Soluble Octa-anionic Iron(III) Porphyrin Complex. Inorganic Chemistry, 2005, 44, 7717-7731.	4.0	46
54	Ligand Interchange Controls Many Oxidations of Divalent First-Row Transition Metal Ions by Free Radicals. Inorganic Chemistry, 1994, 33, 1566-1568.	4.0	44

#	Article	lF	Citations
55	Elucidation of inorganic reaction mechanisms through volume profile analysis. Coordination Chemistry Reviews, 1999, 187, 329-374.	18.8	44
56	Thermodynamic and kinetic study of the interaction between the Pt(ii) centres in [Pt2(N,N,N′,N′-tetrakis(2-pyridylmethyl)diamine)(H2O)2]4+. Influence of the bridging ligand. Dalton Transactions, 2003, , 2979-2985.	3.3	44
57	Thermodynamic, Electrochemical, High-Pressure Kinetic, and Mechanistic Studies of the Formation of Oxo FelVâ°'TAML Species in Water. Inorganic Chemistry, 2010, 49, 11439-11448.	4.0	44
58	Solvent and Pressure Effects on the Motions of Encapsulated Guests: Tuning the Flexibility of a Supramolecular Host. Journal of the American Chemical Society, 2013, 135, 4299-4306.	13.7	44
59	High-Pressure Oxygen-17 NMR Study of the Dihydroxo-Bridged Rhodium(III) Hydrolytic Dimer. Mechanistic Evidence for Limiting Dissociative Water Exchange Pathways. Inorganic Chemistry, 1998, 37, 3948-3953.	4.0	43
60	Tuning the reactivity of chelated dinuclear Pt(ii) complexes through a flexible diamine linker. A detailed kinetic and mechanistic study. Dalton Transactions, 2010, 39, 3595.	3.3	43
61	Cobalamin reduction by dithionite. Evidence for the formation of a six-coordinate cobalamin(ii) complex. Dalton Transactions, 2011, 40, 9831.	3.3	43
62	Chemical composition of submicron and fine particulate matter collected in Krakow, Poland. Consequences for the APARIC project. Chemosphere, 2017, 187, 430-439.	8.2	42
63	Volume profile analysis of the formation and dissociation of carboxymyoglobin. Comparison with the corresponding oxymyoglobin system. Inorganic Chemistry, 1991, 30, 3288-3293.	4.0	41
64	Mechanistic Studies on the Activation of NO by Iron and Cobalt Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 773-798.	2.0	41
65	Ligand-Exchange Processes on Solvated Lithium Cations: DMSO and Water/DMSO Mixtures. ChemPhysChem, 2007, 8, 1315-1320.	2.1	41
66	Comparative study of the catalytic activity of [MnII(bpy)2Cl2] and [Mn2III/IV($\hat{1}\frac{1}{4}$ -O)2(bpy)4](ClO4)3 in the H2O2 induced oxidation of organic dyes in carbonate buffered aqueous solution. Dalton Transactions, 2010, 39, 3264.	3.3	41
67	Thermodynamic and Kinetic Studies on Novel Dinuclear Platinum(II) Complexes Containing Bidentate <i>N</i> , <i>N</i> -donor ligands. Inorganic Chemistry, 2011, 50, 8984-8996.	4.0	41
68	Studies on the reactions of [AuCl ₄] ^{â^'} with different nucleophiles in aqueous solution. Dalton Transactions, 2014, 43, 8620-8632.	3.3	41
69	Complex-formation reactions of Cu(ii) and Zn(ii) 2,2′-bipyridine and 1,10-phenanthroline complexes with bicarbonate. Identification of different carbonate coordination modes. Dalton Transactions RSC, 2001, , 3652-3662.	2.3	40
70	Generation of hydroxyl radicals and singlet oxygen by particulate matter and its inorganic components. Environmental Pollution, 2018, 238, 638-646.	7.5	40
71	Effect of pressure on the formation and deoxygenation kinetics of oxymyoglobin. Mechanistic information from a volume profile analysis. Journal of the American Chemical Society, 1990, 112, 17-22.	13.7	39
72	Interaction of [RullI(edta)(H2O)]– with amino acids in aqueous solution. Equilibrium, kinetic and protease inhibition studiesElectronic supplementary information (ESI) available: kinetic plots and a scheme showing the reaction between [RullI(edta)(H2O)]– and cysteine. See http://www.rsc.org/suppdata/dt/b2/b208495n/. Dalton Transactions, 2003, , 203-209.	3.3	39

#	Article	IF	CITATIONS
73	Thermodynamic and Kinetic Studies on the Binding of Nitric Oxide to a New Enzyme Mimic of Cytochrome P450. Journal of the American Chemical Society, 2006, 128, 13611-13624.	13.7	39
74	Activation Parameters for Hemeâ^'NO Binding in <i>Alcaligenes xylosoxidans</i> Cytochrome <i>c</i> ′: The Putative Dinitrosyl Intermediate Forms via a Dissociative Mechanism. Journal of the American Chemical Society, 2009, 131, 4846-4853.	13.7	39
75	Elucidation of the Solution Structure and Water-Exchange Mechanism of Paramagnetic [Fell(edta)(H2O)]2 Inorganic Chemistry, 2007, 46, 5361-5371.	4.0	38
76	Detailed Spectroscopic, Thermodynamic, and Kinetic Studies on the Protolytic Equilibria of Fe ^{III} cydta and the Activation of Hydrogen Peroxide. Inorganic Chemistry, 2009, 48, 7864-7884.	4.0	38
77	Kinetics and Mechanism of the Interaction of Nitric Oxide with Pentacyanoferrate(II). Formation and Dissociation of [Fe(CN)5NO]3 Inorganic Chemistry, 2003, 42, 4179-4189.	4.0	37
78	Metal complex-assisted activation of small molecules. From NO to superoxide and peroxides. Dalton Transactions, 2008, , 5259.	3.3	37
79	High-Pressure Testing of Heterogeneous Charge Transfer in a Room-Temperature Ionic Liquid:  Evidence for Solvent Dynamic Control. Journal of Physical Chemistry B, 2008, 112, 3085-3100.	2.6	37
80	Reduction of some Pt(iv) complexes with biologically important sulfur-donor ligands. Dalton Transactions, 2013, 42, 8890.	3.3	37
81	A Comparative Mechanistic Study of the Reversible Binding of NO to a Water-Soluble Octa-Cationic FelllPorphyrin Complex. Inorganic Chemistry, 2006, 45, 1326-1337.	4.0	36
82	Ligand-Exchange Processes on Solvated Lithium Cations: Acetonitrile and Hydrogen Cyanide. European Journal of Inorganic Chemistry, 2007, 2007, 1815-1822.	2.0	36
83	Kinetics and mechanism of the reduction of (ImH)[trans-RuCl4(dmso)(Im)] by ascorbic acid in acidic aqueous solution. Journal of Biological Inorganic Chemistry, 2007, 12, 809-818.	2.6	36
84	Remarkably high catalytic activity of the Rulll(edta)/H2O2 system towards degradation of the azo-dye Orange II. Dalton Transactions, 2011, 40, 10473.	3.3	36
85	Substitution behaviour of novel dinuclear Pt(<scp>ii</scp>) complexes with bio-relevant nucleophiles. Dalton Transactions, 2012, 41, 876-884.	3.3	36
86	Influence of an Extremely Negatively Charged Porphyrin on the Reversible Binding Kinetics of NO to Fe(III) and the Subsequent Reductive Nitrosylation. Inorganic Chemistry, 2007, 46, 3336-3352.	4.0	35
87	Kinetic Studies on the Reactions of Different Bifunctional Platinum(II) Complexes with Selected Nucleophiles. European Journal of Inorganic Chemistry, 2010, 2010, 5439-5445.	2.0	35
88	Kinetics and mechanism of the reactions of Au(iii) complexes with some biologically relevant molecules. Dalton Transactions, 2012, 41, 3633.	3.3	35
89	Kinetics and Mechanism of the Reaction of Hydrogen Sulfide with Diaquacobinamide in Aqueous Solution. European Journal of Inorganic Chemistry, 2014, 2014, 4123-4133.	2.0	35
90	Substitution behaviour of amine-bridged dinuclear Pt(ii) complexes with bio-relevant nucleophiles. Dalton Transactions, 2008, , 2759.	3.3	34

#	Article	IF	Citations
91	Mechanistic Investigations of the Reaction of an Iron(III) Octa-Anionic Porphyrin Complex with Hydrogen Peroxide and the Catalyzed Oxidation of Diammonium-2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate). Inorganic Chemistry, 2009, 48, 7667-7678.	4.0	34
92	Mechanistic information on some inorganic and bioinorganic reactions from volume profile analysis. Inorganica Chimica Acta, 2010, 363, 2357-2374.	2.4	34
93	Kinetics and Mechanism of the Formation of Nitroprusside from Aquapentacyanoferrate(III) and NO:Â Complex Formation Controlled by Outer-Sphere Electron Transfer. Inorganic Chemistry, 2002, 41, 5417-5425.	4.0	33
94	Quantum Chemical Analysis of the Enantiomerisation Mechanism of Complexes of the Type $[MII(XU)4]F+ (M = Pt, Pd, Ni; X = S, Se, Te; U = urea)$. European Journal of Inorganic Chemistry, 2006, 2006, 4063-4067.	2.0	33
95	Thermodynamic and Kinetic Studies on Reactions of Felll(meso-[tetra(3-sulfonatomesityl)porphin]) with NO in an Ionic Liquid. Trace Impurities Can Change the Mechanism!. Inorganic Chemistry, 2009, 48, 7466-7475.	4.0	33
96	Combined Experimental and Theoretical Study on the Reactivity of Compounds I and II in Horseradish Peroxidase Biomimetics. Chemistry - A European Journal, 2014, 20, 14437-14450.	3.3	33
97	NO Binding to Cobalamin:Â Influence of the Metal Oxidation State. Inorganic Chemistry, 2004, 43, 2828-2833.	4.0	32
98	Mechanistic studies of reactions of coordination compounds. Some recent highlights. Journal of Coordination Chemistry, 2007, 60, 1-51.	2.2	32
99	Mechanistic Insight into Formation of Oxo″ron(IV) Porphyrin Ï€â€Cation Radicals from Enzyme Mimics of Cytochrome P450 in Organic Solvents. Chemistry - A European Journal, 2009, 15, 2941-2959.	3.3	32
100	Equilibrium and kinetic data for the interaction of diaqua-(S-methyl-l-cysteine)palladium(ii) with biologically relevant ligands. Dalton Transactions RSC, 2002, , 3945.	2.3	31
101	Multiple Mechanisms for Electron Transfer at Metal/Selfâ€Assembled Monolayer/Roomâ€Temperature Ionic Liquid Junctions: Dynamical Arrest versus Frictional Control and Nonâ€Adiabaticity. Chemistry - A European Journal, 2009, 15, 5254-5262.	3.3	31
102	Fast Substitution Reactions of Pt(II) in Different Ionic Liquids. Reactivity Control by Anionic Components. Inorganic Chemistry, 2009, 48, 588-597.	4.0	31
103	Reactions of methyl viologen and nitrite with thiourea dioxide. New opportunities for an old reductant. Dalton Transactions RSC, 2002, , 4074-4076.	2.3	30
104	Rational Design of Cation Hosts – Prediction of Cation Selectivity by Quantum Chemical Calculations. Zeitschrift Fur Physikalische Chemie, 2006, 220, 511-523.	2.8	30
105	Self-Exchange Reaction Kinetics of Metallocenes Revisited:  Insights from the Decamethylferriceniumâ^'Decamethylferrocene Reaction at Variable Pressure. Inorganic Chemistry, 2003, 42, 3718-3722.	4.0	29
106	Equilibrium and Kinetic Studies of the Reactions between Aqua[1-(2-aminoethyl)piperazine]palladium(II) and Biologically Relevant Nucleophiles. European Journal of Inorganic Chemistry, 2009, 2009, 2261-2270.	2.0	29
107	Thermodynamics of Axial Substitution and Kinetics of Reactions with Amino Acids for the Paddlewheel Complex Tetrakis(acetato)chloridodiruthenium(II,III). Inorganic Chemistry, 2012, 51, 6615-6625.	4.0	29
108	Mechanistic Analysis of Reductive Nitrosylation on Water-Soluble Cobalt(III)-Porphyrins. Journal of the American Chemical Society, 2006, 128, 8042-8053.	13.7	28

#	Article	IF	Citations
109	Ligand Exchange Processes on Solvated Beryllium Cations. II [Be(solvent)(12 rownâ€4)] < sup > 2+ < /sup > . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 735-739.	1.2	28
110	Mechanistic Studies on Fast Ligand Substitution Reactions of Pt(II) in Different Ionic Liquids: Role of Solvent Polarity and Ion-Pair Formation. Inorganic Chemistry, 2008, 47, 7121-7132.	4.0	28
111	Ligand exchange processes on the smallest solvated alkali and alkaline earth metal cations: An experimental and theoretical approach. Advances in Inorganic Chemistry, 2009, 61, 523-571.	1.0	28
112	[Ru ^{III} (edta)(H ₂ O)] ^{â^'} mediated oxidation of hydroxyurea with H ₂ O ₂ . Kinetic and mechanistic investigation. Dalton Transactions, 2010, 39, 1695-1698.	3.3	28
113	Axial Ligand and Spinâ€State Influence on the Formation and Reactivity of Hydroperoxo–Iron(III) Porphyrin Complexes. Chemistry - A European Journal, 2012, 18, 6935-6949.	3.3	28
114	Stability and reactivity of gold compounds – From fundamental aspects to applications. Coordination Chemistry Reviews, 2017, 338, 186-206.	18.8	28
115	Mechanism of water exchange on five-coordinate copper(ii) complexes. Dalton Transactions RSC, 2002, , 957.	2.3	27
116	Reaction of [RullI(edta)(H2O)]? with H2O2 in aqueous solution. Kinetic and mechanistic investigation. Dalton Transactions, 2007, , 943.	3.3	27
117	Kinetic and mechanistic studies on reactions of diruthenium(ii,iii) with biologically relevant reducing agents. Dalton Transactions, 2013, 42, 16796.	3.3	27
118	Kinetics and Mechanism of the Reaction of Hydrogen Sulfide with Cobalamin in Aqueous Solution. European Journal of Inorganic Chemistry, 2014, 2014, 852-862.	2.0	27
119	Mechanistic Studies on the Nitrite-Catalyzed Reductive Nitrosylation of Highly Charged Anionic and Cationic FelllPorphyrin Complexes. Inorganic Chemistry, 2006, 45, 6523-6534.	4.0	26
120	Kinetic, Thermodynamic, and Mechanistic Patterns for Free (Unbound) Cytochromec at Au/SAM Junctions: Impact of Electronic Coupling, Hydrostatic Pressure, and Stabilizing/Denaturing Additives. Chemistry - A European Journal, 2006, 12, 7041-7056.	3.3	26
121	Host–Guest Complexes of Oligopyridine Cryptands: Prediction of Ion Selectivity by Quantum Chemical Calculations. European Journal of Inorganic Chemistry, 2007, 2007, 1120-1127.	2.0	26
122	Equilibrium Studies on Complexâ€Formation Reactions of Pd[(2â€(2â€aminoethyl)pyridine)(H ₂ 0) ₂] ²⁺ with Ligands of Biological Significance and Displacement Reactions of DNA Constituents. European Journal of Inorganic Chemistry, 2009, 2009, 3912-3920.	2.0	26
123	Structural, Spectroscopic, and Kinetic Investigation of the Molybdenum Dialkylhydrazido Complexes [MoBr(NNC5H10)(dppe)2]Br and [Mo(NNC5H10)(dppe)2]: Activation Parameters and Revised Mechanism for Nâ´N Cleavageâ€. Inorganic Chemistry, 2009, 48, 2078-2093.	4.0	26
124	Factors That Determine the Mechanism of NO Activation by Metal Complexes of Biological and Environmental Relevance. European Journal of Inorganic Chemistry, 2013, 2013, 460-480.	2.0	26
125	Spectroscopic, thermodynamic, kinetic studies and oxidase/antioxidant biomimetic catalytic activities of tris(3,5-dimethylpyrazolyl)borate Cu(<scp>ii</scp>) complexes. Dalton Transactions, 2015, 44, 14110-14121.	3.3	26
126	Kinetics and mechanism of the complex formation of ethylenediaminetetraacetatoferrate(III) with sulfur(IV) oxides in aqueous solution. Journal of the Chemical Society Dalton Transactions, 1992, , 1037.	1.1	25

#	Article	IF	CITATIONS
127	Thermodynamic and Kinetic Studies on the Reaction between the Vitamin B12Derivative \hat{l}^2 -(N-Methylimidazolyl)cobalamin andN-Methylimidazole: \hat{A} Ligand Displacement at the \hat{l}^{\pm} Axial Site of Cobalamins. Inorganic Chemistry, 2001, 40, 1430-1438.	4.0	25
128	Influence of Solvent on Ligand-Substitution Reactions of Ptll Complexes as Function of the -Acceptor Properties of the Spectator Chelate. European Journal of Inorganic Chemistry, 2005, 2005, 4755-4761.	2.0	25
129	Kinetic and thermodynamic studies on ligand substitution reactions and base-on/base-off equilibria of cyanoimidazolylcobamide, a vitamin B12 analog with an imidazole axial nucleoside. Dalton Transactions, 2005, , 782.	3.3	25
130	Reactivity of Aquacobalamin and Reduced Cobalamin towardS-Nitrosoglutathione and S-Nitroso-N-acetylpenicillamine. Inorganic Chemistry, 2006, 45, 1367-1379.	4.0	25
131	The Classic "Brown-Ring―Reaction in a New Medium: Kinetics, Mechanism, and Spectroscopy of the Reversible Binding of Nitric Oxide to Iron(II) in an Ionic Liquid. Inorganic Chemistry, 2011, 50, 3946-3958.	4.0	25
132	Host - Guest Complexes of Bicyclic Hexaamine Cryptands - Prediction of Ion Selectivity by Quantum Chemical Calculations. III. Australian Journal of Chemistry, 2007, 60, 889.	0.9	24
133	Interplay between Acetate Ions, Peripheral Groups, and Reactivity of the Core Nitrogens in Transmetalation of Tetrapyrroles. Chemistry - A European Journal, 2008, 14, 9419-9430.	3.3	24
134	Versatile and fast gas chromatographic determination of frequently used brominated flame retardants in styrenic polymers. Journal of Chromatography A, 2008, 1203, 217-228.	3.7	24
135	Synthesis, Characterization, Thermodynamic and Kinetic Properties of a New Series of Dinuclear PtllComplexes. European Journal of Inorganic Chemistry, 2009, 2009, 1331-1338.	2.0	24
136	Mechanistic Insight from Activation Parameters for the Reaction of a Ruthenium Hydride Complex with CO ₂ in Conventional Solvents and an Ionic Liquid. Inorganic Chemistry, 2012, 51, 7340-7345.	4.0	24
137	Thermodynamic and kinetic behaviour of [Pt(2-methylthiomethylpyridine)(OH2)2]2+. Dalton Transactions, 2012, 41, 512-522.	3.3	24
138	Structure and reactivity of $[Ru < sup > II < / sup > (terpy)(N^N)Cl]Cl$ complexes: consequences for biological applications. Dalton Transactions, 2017, 46, 10264-10280.	3.3	24
139	The substitution mechanism of [Ruiii(edta)(H2O)]â^' with DNA bases, nucleoside and nucleotides in aqueous solution revisited. Dalton Transactions RSC, 2002, , 962.	2.3	23
140	Influence of the chloride concentration on ligand substitution reactions of [Pt(SMC)Cl2] with biologically relevant nucleophiles. Dalton Transactions, 2009, , 4526.	3.3	23
141	Coordination of 1,10-Phenanthroline and 2,2′-Bipyridine to Li ⁺ in Different Ionic Liquids. How Innocent Are Ionic Liquids?. Inorganic Chemistry, 2011, 50, 6685-6695.	4.0	23
142	Elucidation of inorganic reaction mechanisms in ionic liquids: the important role of solvent donor and acceptor properties. Dalton Transactions, 2014, 43, 15675-15692.	3.3	23
143	Spontaneous solvolysis reactions of some palladium(II)-diethylenetriamine complexes in aqueous solution: equilibrium and kinetic data. Inorganic Chemistry, 1984, 23, 3310-3312.	4.0	22
144	Highâ€pressure pulse radiolysis. Modification of an optical cell for 2â€MeV electron pulse radiolysis at pressures up to 200 MPa. Review of Scientific Instruments, 1992, 63, 3224-3225.	1.3	22

#	Article	IF	Citations
145	The unusually fast reactions between ruthenium(iii)-ammine complexes and NO revisitedElectronic supplementary information (ESI) available: UV-Vis spectrum of [Ru(NH3)5NO]3+ and titration curve for the acid dissociation of [Ru(NH3)5(H2O)]3+. See http://www.rsc.org/suppdata/dt/b2/b210256k/. Dalton Transactions, 2003, , 665-671.	3.3	22
146	Factors That Affect the Nature of the Final Oxidation Products in "Peroxoâ€6hunt―Reactions of Iron–Porphyrin Complexes. Chemistry - A European Journal, 2009, 15, 10182-10198.	3.3	22
147	Combined Low Temperature Rapid Scan and $<$ sup>1 $<$ sup>H NMR Mechanistic Study of the Protonation and Subsequent Benzene Elimination from a (Diimine)platinum(II) Diphenyl Complex Relevant to Arene Câ°'H Activation. Inorganic Chemistry, 2009, 48, 9092-9103.	4.0	22
148	Is bis(trifluoromethylsulfonyl)amide an innocent anion? X-Ray structure data and DFT calculations. Dalton Transactions, 2009, , 2795.	3.3	22
149	Kinetics and mechanism of the [Rulll(edta)(H2O)]â°'-mediated oxidation of cysteine by H2O2. Dalton Transactions, 2011, 40, 10997.	3.3	22
150	Novel Dinuclear Platinum(II) Complexes Containing Mixed Nitrogen–Sulfur Donor Ligands. Inorganic Chemistry, 2011, 50, 12747-12761.	4.0	22
151	Selective oxidation of thiourea with H2O2 catalyzed by [RullI(edta)(H2O)]â^: kinetic and mechanistic studies. Dalton Transactions, 2013, 42, 4725.	3.3	22
152	Temperature and Pressure Effects on C–H Abstraction Reactions Involving Compound I and II Mimics in Aqueous Solution. Inorganic Chemistry, 2014, 53, 2848-2857.	4.0	22
153	Kinetics and mechanism of the reduction of pentacyanonitroferrate(III) by L-ascorbic acid in acidic aqueous solution. Journal of the Chemical Society Dalton Transactions, 1998, , 2497-2502.	1.1	21
154	Effect of Pressure on Proton-Coupled Electron Transfer Reactions of Seven-Coordinate Iron Complexes in Aqueous Solutions. Inorganic Chemistry, 2005, 44, 7624-7633.	4.0	21
155	Kinetics and mechanism of O–O bond cleavage in the reaction of [Rulll(edta)(H2O)]â~' with hydroperoxides in aqueous solution. Dalton Transactions, 2008, , 3851.	3.3	21
156	Square planar versus square pyramidal copper(II) complexes containing N3O moiety: Synthesis, structural characterization, kinetic and catalytic mimicking activity. Inorganica Chimica Acta, 2019, 486, 608-616.	2.4	21
157	Kinetics and mechanism of the substitution behaviour of Pd(ii) piperazine complexes with different biologically relevant nucleophiles. Dalton Transactions, 2007, , 4169.	3.3	20
158	Chelate electronic properties control the redox behaviour and superoxide reactivity of seven-coordinate manganese(II) complexes. Dalton Transactions, 2009, , 6292.	3.3	20
159	Reinvestigation of the formation of a mononuclear Fe(iii) hydroperoxido complex using high pressure kinetics. Dalton Transactions, 2010, 39, 7768.	3.3	20
160	Gas chromatographic determination of phosphate-based flame retardants in styrene-based polymers from waste electrical and electronic equipment. Journal of Chromatography A, 2012, 1262, 188-195.	3.7	20
161	Electrostriction and counter ion effects in an outer-sphere electron transfer reaction. Kinetics of the reduction of hexachloroiridate(IV) by iodide ionâ€. Dalton Transactions RSC, 2001, , 1069-1075.	2.3	19
162	Heterogeneous electron transfer at Au/SAM junctions in a room-temperature ionic liquid under pressure. Chemical Communications, 2008, , 2112.	4.1	19

#	Article	IF	Citations
163	Detailed kinetic and thermodynamic studies on the cyanation of alkylcobalamins. A generalized mechanistic description. Dalton Transactions RSC, 2002, , 3832-3839.	2.3	18
164	Ligand Effects on the Reactivity of CulL Complexes Towards Cl3CCO2â°. European Journal of Inorganic Chemistry, 2002, 2002, 423-429.	2.0	18
165	Rapid ligand substitution reactions in ionic liquids studied by stopped-flow technique. Chemical Communications, 2007, , 4803.	4.1	18
166	Kinetics and Thermodynamics of Small Molecule Binding to Pincer-PCP Rhodium(I) Complexes. Inorganic Chemistry, 2013, 52, 4160-4172.	4.0	18
167	Host–guest complexes of mixed glycol-bipyridine cryptands: prediction of ion selectivity by quantum chemical calculations, part V. Beilstein Journal of Organic Chemistry, 2013, 9, 1252-1268.	2.2	18
168	Host-guest complexes of calix[4]tubes - prediction of ion selectivity by quantum chemical calculations VI. Journal of Molecular Modeling, 2014, 20, 2200.	1.8	18
169	Studies on the Reaction of Iron(II) with NO in a Noncoordinating Ionic Liquid. Inorganic Chemistry, 2015, 54, 6763-6775.	4.0	18
170	High-pressure nuclear magnetic resonance probe designed for a narrow bore magnet system. Review of Scientific Instruments, 2004, 75, 3152-3157.	1.3	17
171	The oxidative degradation of dibenzoazepine derivatives by cerium(<scp>iv</scp>) complexes in acidic sulfate media. Dalton Transactions, 2012, 41, 1259-1267.	3.3	17
172	Mechanistic Insight into Peroxoâ€Shunt Formation of Biomimetic Models for Compoundâ€II, Their Reactivity toward Organic Substrates, and the Influence of <i>N</i> â€Methylimidazole Axial Ligation. Chemistry - A European Journal, 2014, 20, 2328-2343.	3.3	17
173	Synthesis, X-ray structure, DFT and thermodynamic studies of mono- and binuclear palladium(II) complexes involving 1,4-bis(2-hydroxyethyl)piperazine, bio-relevant ligands and 4,4′-bipiperidine. Journal of Coordination Chemistry, 2016, 69, 522-540.	2.2	17
174	Nitrite Impurities Are Responsible for the Reaction Observed between Vitamin B12 and Nitric Oxide in Acidic Aqueous Solution. Inorganic Chemistry, 2006, 45, 7869-7876.	4.0	16
175	Ligand Exchange Processes on Solvated Beryllium Cations. IV Anorganische Und Allgemeine Chemie, 2008, 634, 1915-1920.	1.2	16
176	Influence of Fluoride on the Reversible Binding of NO by [Fe ^{II} (EDTA)(H ₂ O)] ^{2â^³} . Inhibition of Autoxidation of [Fe ^{II} (EDTA)(H ₂ O)] ^{2â^³} . Inorganic Chemistry, 2008, 47, 6314-6321.	4.0	16
177	Mechanistic Studies on Fast Ligand-Substitution Reactions of a Very Labile PdII Complex in Several Ionic Liquids. European Journal of Inorganic Chemistry, 2010, 2010, 4658-4666.	2.0	16
178	Volume Profile Analysis for the Reversible Binding of Superoxide to Form Iron(II)-Superoxo/Iron(III)-Peroxo Porphyrin Complexes. Inorganic Chemistry, 2010, 49, 11254-11260.	4.0	16
179	Redox reactions of a Rulll-edta complex with thioamino acids. Kinetic and mechanistic studies. Dalton Transactions, 2011, 40, 1302.	3.3	16
180	Simplicity within the complexity: Bilateral impact of DMSO on the functional and unfolding patterns of \hat{l}_{\pm} -chymotrypsin. Biophysical Chemistry, 2013, 175-176, 17-27.	2.8	16

#	Article	IF	Citations
181	Mechanism of tetrachloroplatinate(<scp>ii</scp>) oxidation by hydrogen peroxide in hydrochloric acid solution. Dalton Transactions, 2014, 43, 6308-6314.	3.3	16
182	Five-Coordination and Adduct Formation in Colllâ^'Corrinoids Dissecting Ligand Substitution into Its Component Steps. European Journal of Inorganic Chemistry, 2002, 2002, 580-583.	2.0	15
183	Structures of Carbonato and Bicarbonato Complexes of Bis(1,10-phenanthroline)Zinc(II): Experiment and Theory. European Journal of Inorganic Chemistry, 2003, 2003, 1562-1569.	2.0	15
184	Host–guest complexes of mixed glycol-phenanthroline cryptands: prediction of ion selectivity by quantum chemical calculations IV. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 60, 383-392.	1.6	15
185	Application of high pressure laser flash photolysis in studies on selected hemoprotein reactions. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 1481-1492.	2.3	15
186	A New Trigonalâ€Bipyramidal [Cu ^{II} (py <i>t</i> BuN ₃)Cl ₂] Complex: Synthesis, Structure and Ligand Substitution Behaviour. European Journal of Inorganic Chemistry, 2009, 2009, 3111-3118.	2.0	15
187	Kinetics and mechanism of the Co(II)-assisted oxidation of l-ascorbic acid by dioxygen and nitrite in aqueous solution. Dalton Transactions, 2009, , 10541.	3.3	15
188	Mechanistic information from volume profiles for water exchange and complex-formation reactions of aquated Ni(II). pH, buffer and medium effects. Dalton Transactions, 2009, , 9486.	3.3	15
189	An Ionic Liquid Designed for Coordination Chemistry Revisited: Synthetic Routes and Safety Tests for 1â€Ethylâ€3â€methylimidazolium Perchlorate ([emim][ClO ₄]). European Journal of Inorganic Chemistry, 2011, 2011, 4862-4868.	2.0	15
190	Behavior of Highly Diluted Electrolytes in Strong Electric Fields—Prevention of Alumina Deposition on Grading Electrodes in HVDC Transmission Modules by CO ₂ â€induced pHâ€Control. Chemistry - A European Journal, 2014, 20, 12091-12103.	3.3	15
191	Formation of [Ru ^{III} (edta)(SNO)] ^{2–} in Ru ^{III} (edta)-Mediated S-Nitrosylation of Bisulfide Ion. Inorganic Chemistry, 2016, 55, 5037-5040.	4.0	15
192	Synthesis, characterization, speciation and biological studies on metal chelates of 1-benzoyl(1,2,4-triazol-3-yl)thiourea. Journal of Coordination Chemistry, 2017, 70, 1761-1775.	2.2	15
193	Activation volumes for <i>ci><i><i><i><i><i><i><i><i><i><i><i><i><i< td=""><td>2.8</td><td>15</td></i<></i></i></i></i></i></i></i></i></i></i></i></i></i>	2.8	15
194	Outer-sphere electron-transfer between horse heart cytochrome c and anionic Cu(ii/i) complexes. Evidence for precursor formation and coordination sphere reorganization for electron transfer. Dalton Transactions, 2003, , 2710-2717.	3.3	14
195	X-ray Structural Characterization of Imidazolylcobalamin and Histidinylcobalamin:  Cobalamin Models for Aquacobalamin Bound to the B12 Transporter Protein Transcobalamin. Inorganic Chemistry, 2007, 46, 3613-3618.	4.0	14
196	Steric and electronic tuning of the reactivity of [Rull(terpy)(N^N)Cl]Cl complexes. Inorganica Chimica Acta, 2020, 504, 119449.	2.4	14
197	Electron transfer reaction between cytochrome c and trisoxalatocobalt(III)â€. Dalton Transactions RSC, 2001, , 2288-2292.	2.3	13
198	Kinetics of the reduction of cytochrome c by [FeII(edta)(H2O)]2â^: outer-sphere vs. inner-sphere electron transfer mechanisms. Dalton Transactions, 2003, , 2704-2709.	3.3	13

#	Article	IF	Citations
199	Ligand Exchange Processes on the Solvated Zinc Cation II. $[Zn(H2O)4L]2+\hat{A}\cdot 2H2O$ with L = NH3, NH2(CH3), NH(CH3)2, and N(CH3)3. Australian Journal of Chemistry, 2010, 63, 236.	0.9	13
200	Reactivity of a Cytostatic Active $\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle$ -Donor-Containing Dinuclear Pt(II) Complex with Biological Relevant Nucleophiles. Inorganic Chemistry, 2012, 51, 3025-3038.	4.0	13
201	Manganese Compounds as Versatile Catalysts for the Oxidative Degradation of Organic Dyes. Advances in Inorganic Chemistry, 2013, , 165-215.	1.0	13
202	Long-Range Electron Transfer with Myoglobin Immobilized at Au/Mixed-SAM Junctions: Mechanistic Impact of the Strong Protein Confinement. Journal of Physical Chemistry B, 2014, 118, 692-706.	2.6	13
203	Unusual mechanism for the short-range electron transfer within gold–alkanethiol–ionic-liquid films of subnanometer thickness. Physical Review E, 2009, 80, 065101.	2.1	12
204	Spectroscopic and Mechanistic Studies on Oxidation Reactions Catalyzed by the Functional Model SR Complex for Cytochromeâ€P450: Influence of Oxidant, Substrate, and Solvent. Chemistry - A European Journal, 2009, 15, 12447-12459.	3.3	12
205	Mechanistic Information on Cu ^{II} Metalation and Transmetalation of Chlorophylls. European Journal of Inorganic Chemistry, 2009, 2009, 2393-2406.	2.0	12
206	Ligandâ€Exchange Processes on Solvated Zinc Cations: Water Exchange on [Zn(H ₂ O) ₄ (L)] ²⁺ â<2 H ₂ O (L=Heterocyclic Ligand). Chemistry - A European Journal, 2010, 16, 7300-7308.	3.3	12
207	Thermodynamic and kinetic studies on the interaction of Rulll(edta) with NO in an ionic liquid. Dalton Transactions, 2011, 40, 4892.	3.3	12
208	Mineral Precipitation Kinetics: Assessing the Effect of Hydrostatic Pressure and Its Implication on the Nucleation Mechanism. Crystal Growth and Design, 2016, 16, 4846-4854.	3.0	12
209	Xâ€ray and Solution Structure of Inosine 5' â€Monophosphate Coordinated to (Ethylenediamine)palladium(II). —the Importance of Intramolecular Hydrogen Bonding. Chemische Berichte, 1997, 130, 1551-1555.	0.2	11
210	Systematic Counterion Tuning of the Solid-State Structure of [Pt(thiourea)4]2+. European Journal of Inorganic Chemistry, 2007, 2007, 1390-1404.	2.0	11
211	Ligand Exchange Processes on Solvated Lithium Cations. II. Complexation by Cryptands in \hat{I}^3 -Butyrolactone as Solvent. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 58, 81-88.	1.6	11
212	Electron transfer with azurin at Au–SAM junctions in contact with a protic ionic melt: impact of glassy dynamics. Physical Chemistry Chemical Physics, 2013, 15, 16515.	2.8	11
213	Mechanistic information on the nitrite-controlled reduction of aquacob(III)alamin by ascorbate at physiological pH. Journal of Biological Inorganic Chemistry, 2015, 20, 1069-1078.	2.6	11
214	Systematic tuning of the reactivity of [Rull(terpy)(N^N)Cl]Cl complexes. Journal of Coordination Chemistry, 2018, 71, 1761-1777.	2.2	11
215	Kinetic, structural and electrostatic aspects of the reduction of pentacyanoferrate(III) complexes by myoglobin. Journal of Biological Inorganic Chemistry, 1999, 4, 302-310.	2.6	10
216	Evidence for Adduct Formation between ONOO- and CO2 from High-Pressure Pulse Radiolysis. Journal of Physical Chemistry A, 2000, 104, 9712-9714.	2.5	10

#	Article	IF	CITATIONS
217	Ligand Exchange Processes on Solvated Lithium Cations: Complexation by Cryptands in Acetone as Solvent. European Journal of Inorganic Chemistry, 2007, 2007, 3067-3076.	2.0	10
218	Preparation of reference materials for the determination of RoHS-relevant flame retardants in styrenic polymers. Analytical and Bioanalytical Chemistry, 2009, 394, 583-595.	3.7	10
219	Five-coordinate Zinc(II) Complexes Containing Sterically Demanding Bio-mimetic N ₃ S ₂ Ligands. Syntheses, Characterization and DFT Calculations. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2010, 65, 251-257.	0.7	10
220	Mechanistic insight from thermal activation parameters for oxygenation reactions of different substrates with biomimetic iron porphyrin models for compounds I and II. Journal of Biological Inorganic Chemistry, 2012, 17, 27-36.	2.6	10
221	Substrate versus oxidant activation in RullI(edta) catalyzed dye degradation. RSC Advances, 2013, 3, 3606.	3.6	10
222	Kinetics and Mechanism of the Reduction of <i>mer</i> â€Trisâ€picolinatoruthenium(III) by <scp>L</scp> â€Ascorbic Acid. European Journal of Inorganic Chemistry, 2014, 2014, 2529-2535.	2.0	10
223	Electrochemistry of Ru(edta) complexes relevant to small molecule transformations: Catalytic implications and challenges. Coordination Chemistry Reviews, 2021, 436, 213773.	18.8	10
224	Mechanistic Studies on the Reaction between Aquacobalamin and the HNO Donor Piloty's Acid over a Wide pH Range in Aqueous Solution. Inorganic Chemistry, 2021, 60, 2964-2975.	4.0	10
225	Pressure dependence of inorganic electron-transfer reactions in solution. High Pressure Research, 1991, 6, 251-259.	1.2	9
226	Thermodynamic and Kinetic Studies on Complex-Formation Reactions of a Cobalt(II) Tripodal Tetraamine Complex. European Journal of Inorganic Chemistry, 2001, 2001, 503-510.	2.0	9
227	Evaluation of Activation Volumes for the Conversion of Peroxynitrous to Nitric Acid. Journal of Physical Chemistry A, 2003, 107, 11261-11263.	2.5	9
228	Mechanistic insight from activation parameters for the reaction between co-enzyme B12 and cyanide: further evidence that heterolytic Co–C bond cleavage is solvent-assistedElectronic supplementary information (ESI) available: NMR and kinetic data. See http://www.rsc.org/suppdata/dt/b2/b210068a/. Dalton Transactions, 2003, , 596-602.	3.3	9
229	Compact high pressure unit for ultraviolet-visible-near-infrared spectroscopic measurements at pressures up to 400 MPa. Review of Scientific Instruments, 2003, 74, 3758-3762.	1.3	9
230	Mechanistic behaviour of alkylcobaloximes and imino-oxime complexes related to vitamin B12. Dalton Transactions, 2009, , 2392.	3.3	9
231	Structures of Vanadium(III)-Ethylenediamine- <i>N</i> , <i>N</i> ,ꀲ-diacetato- <i>N</i> , <i>N</i> ,ꀲ-diacetato- <i>N</i> ,i>n <i>n<i>n<i>n<i>n<i>n<i>n<i>n<i>n<i>n<</i></i></i></i></i></i></i></i></i>	4.0	9
232	Diverse role of conformational dynamics in carboxypeptidase Aâ€driven peptide and ester hydrolyses: Disclosing the "Perfect Induced Fit―and "Protein Local Unfolding―pathways by altering protein stability. Biopolymers, 2011, 95, 852-870.	2.4	9
233	Direct evidence for catalase activity of $[RuV(edta)(O)]\hat{a}^{2}$. Chemical Communications, 2014, 50, 14562-14565.	4.1	9
234	Fine tuning of copper(<scp>ii</scp>)–chlorophyll interactions in organic media. Metalation versus oxidation of the macrocycle. Dalton Transactions, 2015, 44, 6012-6022.	3.3	9

#	Article	IF	CITATIONS
235	Hostâ€Guest Complexes of [TriPip222], the Piperazine Analogue of [2.2.2]: Prediction of Ion Selectivity by Quantum Chemical Calculations VIII ^[#] . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 395-402.	1.2	9
236	Synthesis and detailed characterization of <i>cis</i> -dichloridobispicolinatoruthenate(III) as solid and in solution. Journal of Coordination Chemistry, 2016, 69, 2107-2120.	2.2	9
237	Synthesis, Characterization, Speciation, DNA Cleavage, and Cytotoxic Studies of the Pd[2â€(2â€Aminoethyl)â€1â€methylpyrrolidine]Cl ₂ Complex with Reference to Carboplatin. European Journal of Inorganic Chemistry, 2017, 2017, 1877-1887.	2.0	9
238	Catalytic Degradation of Orange II by MnIII(TPPS) in Basic Hydrogen Peroxide Medium: A Detailed Kinetic Analysis. European Journal of Inorganic Chemistry, 2018, 2018, 3462-3471.	2.0	9
239	Prediction of ion selectivity by quantum chemical calculations X: A recent (personal) review. Advances in Inorganic Chemistry, 2019, 73, 445-505.	1.0	9
240	Inorganic reaction mechanisms. A personal journey. Dalton Transactions, 2020, 49, 4599-4659.	3.3	9
241	Influence of aqueous extracts of urban airborne particulate matter on the structure and function of human serum albumin. Environmental Pollution, 2020, 263, 114667.	7.5	9
242	Inhaled silica nanoparticles exacerbate atherosclerosis through skewing macrophage polarization towards M1 phenotype. Ecotoxicology and Environmental Safety, 2022, 230, 113112.	6.0	9
243	Kinetics and Mechanism of Substitution Reactions of <i>ci>cis</i> à€{PtMe ₂ (dmso) ₂] with Pyridine. Chemische Berichte, 1997, 130, 1791-1799.	0.2	8
244	Ligand Exchange Processes on Solvated Lithium Cations. VI. Determination of Coordination Numbers by Ligand Substitution and ⁷ Li NMR. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2010, 65, 405-413.	0.7	8
245	Mechanistic Studies on the Reactions of Cyanide with a Water-Soluble Fe(III) Porphyrin and Their Effect on the Binding of NO. Inorganic Chemistry, 2011, 50, 3413-3424.	4.0	8
246	Apparent or real water exchange reactions on $[Zn(H2O)4(L)]2+\hat{A}\cdot 2H2O$ (L = sp-nitrogen donor ligands)? A quantum chemical investigation. Dalton Transactions, 2012, 41, 6932.	3.3	8
247	Coordination of Terpyridine to Li ⁺ in Two Different Ionic Liquids. Inorganic Chemistry, 2013, 52, 13167-13178.	4.0	8
248	RullI(edta) mediated oxidation of azide in the presence of hydrogen peroxide. Azide versus peroxide activation. Dalton Transactions, 2014, 43, 3087-3094.	3.3	8
249	Iron(II) complexes containing the 2,6-bis-iminopyridyl moiety. Synthesis, characterization, reactivity, and DNA binding. Journal of Coordination Chemistry, 2015, 68, 2054-2064.	2.2	8
250	Host-guest complexes of the Beer-Can-cryptand: prediction of ion selectivity by quantum chemical calculations XI. Journal of Coordination Chemistry, 2019, 72, 2106-2114.	2.2	8
251	Mechanistic insight on the chemistry of potential Pt antitumor agents as revealed by collaborative research performed in Kragujevac and Erlangen. Inorganica Chimica Acta, 2019, 495, 118953.	2.4	8
252	Probing the interaction of iron complex containing N3S2 macrocyclic ligand with bovine serum albumin using spectroscopic techniques. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117811.	3.9	8

#	Article	IF	Citations
253	Generation and photogeneration of hydroxyl radicals and singlet oxygen by particulate matter and its inorganic components. Journal of Environmental Chemical Engineering, 2021, 9, 106478.	6.7	8
254	Characterization of a Mixed-Valence Ru(II)/Ru(III) Ion-Pair Complex. Unexpected High-Frequency Electron Paramagnetic Resonance Evidence for Ru(III)–Ru(III) Dimer Coupling. Inorganic Chemistry, 2020, 59, 8609-8619.	4.0	8
255	Mechanistic differences between "reductive―and "oxidative―heterolysis of metal–carbon σ bonds. Dalton Transactions RSC, 2000, , 3356-3359.	2.3	7
256	Mechanism of OO bond activation and substrate oxidation by Ru-edta complexes. Journal of Molecular Catalysis A, 2012, 355, 61-68.	4.8	7
257	RullI(EDTA) mediated S-nitrosylation of cysteine by nitrite. Dalton Transactions, 2014, 43, 18042-18046.	3.3	7
258	Spectroscopic and Kinetic Evidence for the Crucial Role of Compoundâ€0 in the P450 _{cam} â€Catalyzed Hydroxylation of Camphor by Hydrogen Peroxide. Chemistry - A European Journal, 2015, 21, 15201-15210.	3 . 3	7
259	Metal-Assisted Activation of Nitric Oxide—Mechanistic Aspects of Complex Nitrosylation Processes. Advances in Inorganic Chemistry, 2015, 67, 171-241.	1.0	7
260	Can nitrocobalamin be reduced by ascorbic acid to nitroxylcobalamin? Some surprising mechanistic findings. Journal of Biological Inorganic Chemistry, 2018, 23, 377-383.	2.6	7
261	Hostâ€Guest Complexes of Dodeka(ethylene)octamine: Prediction of Ion Selectivity by Quantum Chemical Calculations IX. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 701-705.	1.2	7
262	Urban Particulate Matterâ€Induced Decomposition of <i>S</i> à€Nitrosoglutathione Relevant to Aberrant Nitric Oxide Biological Signaling. ChemSusChem, 2019, 12, 661-671.	6.8	7
263	Ru ^{III} (edta) complexes as molecular redox catalysts in chemical and electrochemical reduction of dioxygen and hydrogen peroxide: inner-sphere <i>versus</i> outer-sphere mechanism. RSC Advances, 2021, 11, 21359-21366.	3 . 6	7
264	Electron Transfer Reactions of RullI(edta) Containing the N-Heterocyclic Ligand Pyrazine: Kinetic and Mechanistic Studies. Macroheterocycles, 2020, 13, 193-200.	0.5	7
265	Kinetic and thermodynamic studies on the cyanation reactions and base-on/base-off equilibria of alkyl-13-epicobalamins. Dalton Transactions, 2003, , 2986-2991.	3.3	6
266	Kinetics and Mechanism of Axial Ligand Substitution of Alkyl Cobaloximes by Substituted Pyridines in Different Solvents. European Journal of Inorganic Chemistry, 2004, 2004, 653-659.	2.0	6
267	Pressure-Tuning Photochemistry of Metal Complexes in Solution. Advances in Photochemistry, 2007, , 61-146.	0.4	6
268	Hydrogen Cyanide Exchange on [Al(HCN) ₆] ³⁺ – A DFT Study. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 434-438.	1,2	6
269	Structural and mechanistic information on the nitrosation of model Fe(ii) complexes containing a biomimetic S4N chelate. Dalton Transactions, 2011, 40, 287-294.	3.3	6
270	How or not to calculate Ni(II) Werner-type complexes: evaluation of quantum chemical methods. Journal of Coordination Chemistry, 2011, 64, 18-29.	2.2	6

#	Article	IF	CITATIONS
271	Polyaminecarboxylateruthenium(III) complexes on the mosaic of bioinorganic reactions. Kinetic and mechanistic impact. Advances in Inorganic Chemistry, 2012, 64, 183-217.	1.0	6
272	Mechanistic Complications Caused by Redox Equilibration: Ascorbate Reduction of a Ruthenium(III) Complex under Low Driving Force Conditions. European Journal of Inorganic Chemistry, 2016, 2016, 5380-5386.	2.0	6
273	The Influence of Redoxâ€Active Transition Metal Containing Micro―and Nanoparticles on the Properties of Representative Bioinorganic Reaction Systems. European Journal of Inorganic Chemistry, 2018, 2018, 1229-1235.	2.0	6
274	Reaction mechanisms relevant to the formation and utilization of [Ru(edta)(NO)] complexes in aqueous media. Journal of Inorganic Biochemistry, 2021, 225, 111595.	3.5	6
275	Temperature and pressure effects on the kinetics of the Bromate ion-iodide ion-L-ascorbic acid clock reaction. International Journal of Chemical Kinetics, 1995, 27, 491-498.	1.6	5
276	Kinetics and mechanisms of Fe(III) complexation by lipophilic 3-hydroxy-2-methyl- $1(\hat{l}^3$ -stearoamidopropyl)-4-pyridinone (HMSP). Journal of Biological Inorganic Chemistry, 1997, 2, 728-743.	2.6	5
277	Hydrogen Carbonate Inhibited and Induced Substitution Reactions of Labile Squareâ€Planar Diethylenetriaminepalladium(II) Complexes. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 1418-1427.	0.9	5
278	Mechanism of Isomerization of Ni(cyclam) in Aqueous Solutions. European Journal of Inorganic Chemistry, 2005, 2005, 4997-5004.	2.0	5
279	Seven-coordinate iron(II) complexes of sulfur-based N ₃ S ₂ -macrocyclic ligands: synthesis, properties, and crystal structure. Journal of Coordination Chemistry, 2012, 65, 934-944.	2.2	5
280	A complete volume profile for the reversible binding of camphor to cytochrome P450cam. Journal of Biological Inorganic Chemistry, 2012, 17, 447-463.	2.6	5
281	Analysis of flame retardants and elements of concern in printed wiring boards with respect to origin and year of construction. Analytical and Bioanalytical Chemistry, 2013, 405, 7215-7229.	3.7	5
282	Reply to the Comment on the Article "Gutmann Donor and Acceptor Numbers for Ionic Liquids― (<i>Chem. Eur. J.</i> 2012, <i>18</i> 10969–10982) by J.â€F. Gal and C. Laurence. Chemistry - A European Journal, 2013, 19, 16835-16836.	3.3	5
283	Electron transfer with self-assembled copper ions at Au-deposited biomimetic films: mechanistic â€~anomalies' disclosed by temperature- and pressure-assisted fast-scan voltammetry. Journal Physics D: Applied Physics, 2015, 48, 255402.	2.8	5
284	Reversible release of nitric oxide from an iron(II) nitrosyl complex containing a biomimetic S ₄ N chelate. A facile release of nitric oxide. Journal of Coordination Chemistry, 2017, 70, 1713-1722.	2.2	5
285	RullI(EDTA) mediated activation of redox signalling molecules. Coordination Chemistry Reviews, 2017, 349, 129-138.	18.8	5
286	Studies on Pd(1,4-bis(2-hydroxyethyl)piperazine)-dicarboxylic acid complexes as models for carboplatin with structural features enhancing the interaction with DNA. Journal of Coordination Chemistry, 2019, 72, 2035-2049.	2.2	5
287	Noble guests in organic cages – encapsulation of noble gases by cryptophane. Journal of Coordination Chemistry, 2020, 73, 2602-2612.	2.2	5
288	Can a Nonorganometallic Ruthenium(II) Polypyridylamine Complex Catalyze Hydride Transfer? Mechanistic Insight from Solution Kinetics on the Reduction of Coenzyme NAD ⁺ by Formate. Inorganic Chemistry, 2020, 59, 14944-14953.	4.0	5

#	Article	IF	CITATIONS
289	Renaissance in NO Chemistry. Inorganic Chemistry, 2021, 60, 15831-15834.	4.0	5
290	The Reaction Mechanisms of Zinc Enzymes. , 0, , 1-29.		4
291	The impact of tripodal chelates on water exchange kinetics and mechanisms: A variable temperature and pressure 17O NMR study to clarify the structure-reactivity relationship in [Fell(L)(H2O)2]â´´ complexes. Magnetic Resonance in Chemistry, 2008, 46, S94-S99.	1.9	4
292	Mechanistic Information on the Reversible Binding of NO to Mono―and Dinuclear Fe ^{II} Complexes of a Biomimetic S ₄ N Ligand. European Journal of Inorganic Chemistry, 2010, 2010, 554-561.	2.0	4
293	Application of low-temperature rapid-scan techniques in the elucidation of inorganic reaction mechanisms. Coordination Chemistry Reviews, 2010, 254, 297-308.	18.8	4
294	Kinetics and mechanism of the reaction of [Rull(tpy)(pic)(H2O)]+ with KHSO5 in oxidative cleavage of DNA. Journal of Coordination Chemistry, 2011, 64, 30-37.	2.2	4
295	Quantum chemical studies on the enantiomerization mechanism of several [Zn(py)3(tach)]2+ derivatives. Dalton Transactions, 2012, 41, 14151.	3.3	4
296	Mechanistic Studies on Waterâ€Exchange Reactions in [Zn(H ₂ 0) for L = sp ² , sp ³ Oxygenâ€Donor Ligands: A DFT Approach. European Journal of Inorganic Chemistry, 2013, 2013, 2059-2069.	2.0	4
297	Baseâ€Catalyzed Hydrolysis of a Ru ^{II} –Chloro–dmso Complex and Its Reactivity towards <scp>L</scp> â€Methionine. European Journal of Inorganic Chemistry, 2014, 2014, 1333-1344.	2.0	4
298	Preparation of candidate reference materials for the determination of phosphorus containing flame retardants in styrene-based polymers. Analytical and Bioanalytical Chemistry, 2015, 407, 3023-3034.	3.7	4
299	Amine-bridged binuclear complexes involving [Pd(ethylenediamine)(H ₂ 0) ₂] ²⁺ , 4,4′-bipiperidine and DNA constituents. Journal of Coordination Chemistry, 2015, 68, 2041-2053.	2.2	4
300	Redox Equilibration Observed for the Reduction of a Ruthenium(III) Complex by Ascorbate under Lowâ€Drivingâ€Force Conditions. European Journal of Inorganic Chemistry, 2017, 2017, 3275-3284.	2.0	4
301	Nitrosyl- versus nitroxyl-cobalamin?. Journal of Biological Inorganic Chemistry, 2019, 24, 311-313.	2.6	4
302	Physicochemical Analysis of Water Extracts of Particulate Matter from Polluted Air in the Area of Kraków, Poland. Atmosphere, 2021, 12, 565.	2.3	4
303	Ligand-Tuning of the Stability of Pd(II) Conjugates with Cyanocobalamin. International Journal of Molecular Sciences, 2021, 22, 7973.	4.1	4
304	Experimental and Computational Insight into the Mechanism of NO Binding to Ferric Microperoxidase. The Likely Role of Tautomerization to Account for the pH Dependence. Inorganic Chemistry, 2021, 60, 15948-15967.	4.0	4
305	Mechanistic details of the catalytic degradation of methylene blue by hydrogen peroxide in basic solution. The unexpected innocence of percarbonate. Polyhedron, 2021, 210, 115507.	2.2	4
306	Water Exchange Controls the Complex-Formation Mechanism of Water-Soluble Iron(III) Porphyrins: Conclusive Evidence for Dissociative Water Exchange from a High-Pressure (17)O NMR Study The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft, Fonds der Chemischen Industrie, and the Max-Buchner-Forschungsstiftung. Angewandte Chemie - International Edition, 2001, 40, 1678-1680.	13.8	4

#	Article	IF	CITATIONS
307	BSA Interaction, Molecular Docking, and Antibacterial Activity of Zinc(II) Complexes Containing the Sterically Demanding Biomimetic N3S2 Ligand: The Effect of Structure Flexibility. Molecules, 2022, 27, 3543.	3.8	4
308	REACTIVITY OF NUCLEOPHILES TOWARDS X-3-(p-TOLYLSULFONYL)-1,2,3-BENZOXATHIAZOLE 2,2-DIOXIDES: KINETICS, ACTIVATION VOLUMES AND MECHANISM. Journal of Physical Organic Chemistry, 1997, 10, 175-181.	1.9	3
309	Electron Transfer Reactions Under High Pressure: Application of Spectroscopic and Electrochemical Techniques. Advances in Chemistry Series, 1998, , 315-330.	0.6	3
310	Effect of Inhibitors on the Catalyzed Dehydration of HCO3-by Copper(II) Complexes Re-Evaluated. Inorganic Chemistry, 2004, 43, 2756-2758.	4.0	3
311	Thermodynamics of the interaction of ruthenium(iii) polyaminecarboxylate complexes with bio-relevant ligands. Deactivation of the complexes as NO scavengers by thiol ligands. Dalton Transactions, 2012, 41, 13447.	3.3	3
312	RullI(edta)-mediated interaction of nitrite and sulphide: formation of an N-bonded thionitrous acid (HSNO) complex of RullI(edta) in aqueous solution. New Journal of Chemistry, 2019, 43, 15311-15315.	2.8	3
313	Tuning the lability of a series of Ru(II) polypyridyl complexes: a comparison of experimental-kinetic and DFT-predicted reaction mechanisms. Journal of Coordination Chemistry, 2021, 74, 433-443.	2.2	3
314	[3.2.1] and [4.1.1] isomers of Lehn's [2.2.2] Cryptand: Prediction of ion selectivity by quantum chemical calculations XV**. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 915-921.	1.2	3
315	Metabolic Response of RAW 264.7 Macrophages to Exposure to Crude Particulate Matter and a Reduced Content of Organic Matter. Toxics, 2021, 9, 205.	3.7	3
316	Oxidoreductase mimicking activity of Ru(edta) complexes in conversion of NAD coenzymes. Polyhedron, 2022, 221, 115872.	2.2	3
317	Advances in the mechanistic understanding of selected reactions of transition metal polyaminecarboxylate complexes. Advances in Inorganic Chemistry, 2012, , 141-181.	1.0	2
318	Amine-bridged binuclear palladium(II) complexes with inosine. Equilibrium studies and DFT calculations. Journal of Coordination Chemistry, 2013, 66, 3469-3480.	2.2	2
319	Base hydrolysis of α-amino acid esters catalysed by [Pd(N-ethylethylenediamine)(H2O)2]2+. Kinetic study and DFT calculations. Inorganica Chimica Acta, 2017, 458, 181-189.	2.4	2
320	High-nuclearity ruthenium carbonyl cluster chemistry. 9. Ligand substitution at decaruthenium carbonyl clusters. Journal of Organometallic Chemistry, 2017, 849-850, 63-70.	1.8	2
321	Spectroscopic Evidence for Ligand Substitution Reactions at the Solid–Liquid Interface of a Subâ€micrometer Gold(I) Carbene Complex. Angewandte Chemie - International Edition, 2018, 57, 663-667.	13.8	2
322	Spectroscopic Evidence for Ligand Substitution Reactions at the Solid–Liquid Interface of a Subâ€micrometer Gold(I) Carbene Complex. Angewandte Chemie, 2018, 130, 671-675.	2.0	2
323	A Kinetic Study on the Efficient Formation of High-Valent Mn(TPPS)-oxo Complexes by Various Oxidants. Catalysts, 2020, 10, 610.	3.5	2
324	Influence of Krakow Winter and Summer Dusts on the Redox Cycling of Vitamin B12a in the Presence of Ascorbic Acid. Atmosphere, 2021, 12, 1050.	2.3	2

#	Article	IF	CITATIONS
325	A theoretical mechanistic study of [K âŠ, [2.2.2]] ⁺ enantiomerization. Journal of Physical Organic Chemistry, 2022, 35, e4289.	1.9	2
326	Chlorophyll <i>a</i> ï€â€Cation Radical as Redox Mediator in Superoxide Dismutase (SOD) Mimetics. ChemPhysChem, 2021, 22, 344-348.	2.1	2
327	Tuning the Reversible Binding of NO to Iron(II) Aminocarboxylate and Related Complexes in Aqueous Solution. European Journal of Inorganic Chemistry, 2001, 2001, 491.	2.0	2
328	Investigation of water substitution at <scp>Ru^{II}</scp> complexes by conceptual <scp>density function theory</scp> approach. Journal of Computational Chemistry, 2022, 43, 1161-1175.	3.3	2
329	Mixed-valence outer-sphere Rull/Rulll ion-pair complexes. Synthesis, experimental, and theoretical studies. Polyhedron, 2022, 223, 115939.	2.2	2
330	Effect of pressure on an intramolecular electron-transfer reaction induced by pulse-radiolysis. High Pressure Research, 1991, 6, 287-290.	1.2	1
331	Solvent, salt and high pressure effects on the rate and equilibrium constants for the formation of triâ€∢i>n√li>â€butylphosphoniumdithiocarboxylate. Journal of Physical Organic Chemistry, 2011, 24, 360-365.	1.9	1
332	Heterogeneous proton-coupled electron transfer in seven-coordinate iron superoxide dismutase mimetics: concerted mechanism for two-proton one-electron transfer. Bioinorganic Reaction Mechanisms, 2012, 8, .	0.4	1
333	Quantum chemical investigations of the water exchange mechanism on [AllII(H2O)5(L)]2+ as a function of the donor strength of the anionic L. Journal of Molecular Modeling, 2014, 20, 2083.	1.8	1
334	Mechanistic Studies on the Reaction of [FellI (edta)(H2 O)]- with Piloty′s Acid as Source for HNO. European Journal of Inorganic Chemistry, 2019, 2019, 2735-2741.	2.0	1
335	The influence of the bridgehead in Saalfrank-type cryptands: prediction of ion selectivity by quantum chemical calculations XIIâ€. Journal of Coordination Chemistry, 2020, 73, 1701-1711.	2.2	1
336	High-Pressure Mechanistic Insight into Bioinorganic NO Chemistry. Molecules, 2021, 26, 4947.	3.8	1
337	The self-assembled, atomically defined, flexible and highly tunable bilayered Au/L-cysteine/Cu(II/I) junctions capable of voltage-gated coherent multiple electron/hole exchange. Nano Futures, 2021, 5, 015001.	2.2	1
338	Tuning the Reversible Binding of NO to Iron(II) Aminocarboxylate and Related Complexes in Aqueous Solution., 2001, 2001, 491.		1
339	Influence of modified nano-copper oxide particles on the reaction between nitrocobalamin and ascorbic acid. Polyhedron, 2022, 223, 115942.	2.2	1
340	Volume of activation as mechanistic indicator in substitution reactions of organometallic complexes. High Pressure Research, 1990, 5, 653-655.	1.2	0
341	Cytochrome P450 enzyme mimics in â€~peroxo-shunt' oxidation reactions – a kinetic and mechanistic approach. Bioinorganic Reaction Mechanisms, 2011, 7, .	0.4	0
342	HCN exchange on [Cu(HCN)4]+: a quantum chemical investigation. Journal of Coordination Chemistry, 2014, 67, 2185-2194.	2.2	0

#	Article	IF	CITATIONS
343	Reaction of [Ru ^{III} (EDTA)(H ₂ O/OH)] ^{â^²/2â^²} with bisulfide and persulfide in aqueous solution: kinetic and mechanistic studies. Journal of Coordination Chemistry, 2019, 72, 2904-2915.	2.2	O
344	Kinetics, mechanism and density functional theory calculations on base hydrolysis of α-amino acid esters catalyzed by [Pd(AEMP)(H2O)2]2+ (AEMP = 2-(2-aminoethyl)-1-methylpyrrolidine). Reaction Kin Mechanisms and Catalysis, 2020, 129, 613-626.	eti as 7	0
345	Mechanistic Studies on the Metal Catalyzed Autoxidation of Sulfur(IV) Oxides., 0,, 387-400.		O
346	From NO to Peroxide Activation by Model Iron(III) Complexes., 0,, 245-272.		0
347	Mechanistic insight on the water exchange mechanism of [Zn(tren)H ₂ 0] ²⁺ and related complexes from a DFT study. Journal of Coordination Chemistry, 0, , 1-14.	2.2	0