Anil Mishra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9224116/publications.pdf Version: 2024-02-01

ANII MISHDA

#	Article	IF	CITATIONS
1	Molecules involved in the development of Barrett's esophagus (BE) phenotype in chronic eosinophilic esophagitis (EoE). American Journal of Physiology - Renal Physiology, 2022, , .	3.4	Ο
2	Experimental Modeling of Eosinophil-Associated Diseases. Methods in Molecular Biology, 2021, 2241, 275-291.	0.9	3
3	Tacrolimus (FK506) treatment protects allergenâ€; ILâ€5―and ILâ€13â€induced mucosal eosinophilia. Immunology, 2021, 163, 220-235.	4.4	12
4	Eosinophils in the pathogenesis of pancreatic disorders. Seminars in Immunopathology, 2021, 43, 411-422.	6.1	9
5	Macrophages-induced IL-18–mediated eosinophilia promotes characteristics of pancreatic malignancy. Life Science Alliance, 2021, 4, e202000979.	2.8	8
6	Blood mRNA levels of T cells and IgE receptors are novel non-invasive biomarkers for eosinophilic esophagitis (EoE). Clinical Immunology, 2021, 227, 108752.	3.2	5
7	Chronic inflammation promotes epithelial-mesenchymal transition-mediated malignant phenotypes and lung injury in experimentally-induced pancreatitis. Life Sciences, 2021, 278, 119640.	4.3	6
8	Eosinophils and T cell surface molecule transcript levels in the blood differentiate eosinophilic esophagitis (EoE) from GERD. International Journal of Basic and Clinical Immunology, 2021, 4, 1-8.	0.0	0
9	Role of ILâ€18â€ŧransformed CD274â€expressing eosinophils in promoting airway obstruction in experimental asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, , .	5.7	3
10	Vaccine efficacy in mutant SARS-CoV-2 variants. , 2021, 4, 1-12.		4
11	IL-15 immunotherapy is a viable strategy for COVID-19. Cytokine and Growth Factor Reviews, 2020, 54, 24-31.	7.2	38
12	Eosinophilic pancreatitis: a rare or unexplored disease entity?. Przeglad Gastroenterologiczny, 2020, 15, 34-38.	0.7	4
13	Chronic Pancreatitis and the Development of Pancreatic Cancer. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2020, 20, 1182-1210.	1.2	28
14	Interleukin (IL)-15 significance in aging associated asthma pathogenesis. , 2020, 3, .		0
15	Possible novel non-invasive biomarker for inflammation mediated pancreatic malignancy. International Journal of Basic and Clinical Immunology, 2020, 3, 1-8.	0.0	0
16	Attenuation of Allergen-, IL-13–, and TGF-α–induced Lung Fibrosis after the Treatment of rIL-15 in Mice. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 97-109.	2.9	19
17	Synergy of Interleukin (IL)-5 and IL-18 in eosinophil mediated pathogenesis of allergic diseases. Cytokine and Growth Factor Reviews, 2019, 47, 83-98.	7.2	55
18	IL-18 overexpression promotes eosinophils-mediated peanut-induced intestinal allergy. Journal of Allergy and Clinical Immunology, 2019, 143, AB254.	2.9	1

#	Article	IF	CITATIONS
19	Intestinal overexpression of IL â€18 promotes eosinophilsâ€mediated allergic disorders. Immunology, 2019, 157, 110-121.	4.4	16
20	Significance of Interleukin (IL)-15 in IgE associated eosinophilic Esophagitis (EoE). International Journal of Basic and Clinical Immunology, 2019, 2, 1-12.	0.0	3
21	Intestinal overexpression of interleukin (<scp>IL</scp>)â€15 promotes tissue eosinophilia and goblet cell hyperplasia. Immunology and Cell Biology, 2018, 96, 273-283.	2.3	4
22	A critical role for IL-18 in transformation and maturation of naive eosinophils to pathogenic eosinophils. Journal of Allergy and Clinical Immunology, 2018, 142, 301-305.	2.9	27
23	Regulatory effects of IL-15 on allergen-induced airway obstruction. Journal of Allergy and Clinical Immunology, 2018, 141, 906-917.e6.	2.9	31
24	Role of Vasoactive Intestinal Peptide in Promoting the Pathogenesis of Eosinophilic Esophagitis (EoE). Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 99-100.e7.	4.5	13
25	Role of eosinophils in the initiation and progression of pancreatitis pathogenesis. American Journal of Physiology - Renal Physiology, 2018, 314, G211-G222.	3.4	28
26	IL-15 regulates fibrosis and inflammation in a mouse model of chronic pancreatitis. American Journal of Physiology - Renal Physiology, 2018, 315, G954-G965.	3.4	36
27	Interleukin-18 has an Important Role in Differentiation and Maturation of Mucosal Mast Cells. , 2018, 2, .		5
28	Immunomodulatory effects of tacrolimus (FK506) for the treatment of allergic diseases. , 2018, 1, 5-13.		2
29	Possible Noninvasive Biomarker of Eosinophilic Esophagitis: Clinical and Experimental Evidence. Case Reports in Gastroenterology, 2017, 10, 685-692.	0.6	13
30	Neuroendocrine cells derived chemokine vasoactive intestinal polypeptide (VIP) in allergic diseases. Cytokine and Growth Factor Reviews, 2017, 38, 37-48.	7.2	35
31	Food-Induced Acute Pancreatitis. Digestive Diseases and Sciences, 2017, 62, 3287-3297.	2.3	16
32	Pathogenic mechanisms of pancreatitis. World Journal of Gastrointestinal Pharmacology and Therapeutics, 2017, 8, 10.	1.1	166
33	Chronic Pancreatitis Associated Acute Respiratory Failure. MOJ Immunology, 2017, 5, .	11.0	9
34	Significance of Eosinophils in Promoting Pancreatic malignancy. Journal of Gastroenterology, Pancreatology & Liver Disorders, 2017, 5, 1-9.	0.2	11
35	Immunological Responses Involved In Promoting Acute and Chronic Pancreatitis. Clinical Immunology & Research, 2017, 1, 1-8.	0.1	5
36	Potential of Inducible Nitric Oxide Synthase as a Therapeutic Target for Allergen-Induced Airway Hyperresponsiveness: A Critical Connection to Nitric Oxide Levels and PARP Activity. Mediators of Inflammation, 2016, 2016, 1-10.	3.0	11

#	Article	IF	CITATIONS
37	Food allergy and eosinophilic esophagitis in India: Lack of diagnosis. Indian Journal of Gastroenterology, 2016, 35, 72-73.	1.4	10
38	Role of interleukin-18 in the pathophysiology of allergic diseases. Cytokine and Growth Factor Reviews, 2016, 32, 31-39.	7.2	38
39	Elements Involved In Promoting Eosinophilic Gastrointestinal Disorders. Journal of Genetic Syndromes & Gene Therapy, 2015, 06, .	0.2	8
40	Involvement of interleukin-18 in the pathogenesis of human eosinophilic esophagitis. Clinical Immunology, 2015, 157, 103-113.	3.2	38
41	Allergenâ€induced interleukinâ€18 promotes experimental eosinophilic oesophagitis in mice. Immunology and Cell Biology, 2015, 93, 849-857.	2.3	24
42	Invariant natural killer T ell neutralization is a possible novel therapy for human eosinophilic esophagitis. Clinical and Translational Immunology, 2014, 3, e9.	3.8	47
43	Diagnostic and therapeutic strategies for eosinophilic esophagitis. Clinical Practice (London,) Tj ETQq1 1 0.78431	4 rgBT /0	Overlock 10 Ti
44	Allergen-induced resistin-like molecule-α promotes esophageal epithelial cell hyperplasia in eosinophilic esophagitis. American Journal of Physiology - Renal Physiology, 2014, 307, G499-G507.	3.4	18
45	Pathogenic role of mast cells in experimental eosinophilic esophagitis. American Journal of Physiology - Renal Physiology, 2013, 304, G1087-G1094.	3.4	91
46	Pathogenesis of allergenâ€induced eosinophilic esophagitis is independent of interleukin (IL)â€13. Immunology and Cell Biology, 2013, 91, 408-415.	2.3	47
47	Significance of Mouse Models in Dissecting the Mechanism of Human Eosinophilic Gastrointestinal Diseases (ECID). Journal of Gastroenterology and Hepatology Research, 2013, 2, 845-853.	0.2	15
48	Significance of para-esophageal lymph nodes in food or aeroallergen-induced iNKT cell-mediated experimental eosinophilic esophagitis. American Journal of Physiology - Renal Physiology, 2012, 302, G645-G654.	3.4	73
49	Esophageal functional impairments in experimental eosinophilic esophagitis. American Journal of Physiology - Renal Physiology, 2012, 302, G1347-G1355.	3.4	72
50	Indoor insect allergens are potent inducers of experimental eosinophilic esophagitis in mice. Journal of Leukocyte Biology, 2010, 88, 337-346.	3.3	80
51	Interleukin-15 Expression Is Increased in Human Eosinophilic Esophagitis and Mediates Pathogenesis in Mice. Gastroenterology, 2010, 139, 182-193.e7.	1.3	93
52	An imbalance of esophageal effector and regulatory T cell subsets in experimental eosinophilic esophagitis in mice. American Journal of Physiology - Renal Physiology, 2009, 297, G550-G558.	3.4	25
53	Mechanism of Eosinophilic Esophagitis. Immunology and Allergy Clinics of North America, 2009, 29, 29-40.	1.9	45
54	Esophageal Remodeling Develops as a Consequence of Tissue Specific IL-5-Induced Eosinophilia. Gastroenterology, 2008, 134, 204-214.	1.3	240

#	Article	IF	CITATIONS
55	Blockade of β-Catenin Signaling by Plant Flavonoid Apigenin Suppresses Prostate Carcinogenesis in TRAMP Mice. Cancer Research, 2007, 67, 6925-6935.	0.9	117
56	Resistin-like molecule-Î ² is an allergen-induced cytokine with inflammatory and remodeling activity in the murine lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L305-L313.	2.9	59
57	Critical role for adaptive T cell immunity in experimental eosinophilic esophagitis in mice. Journal of Leukocyte Biology, 2007, 81, 916-924.	3.3	152
58	Critical Role For Adaptive T Cell Immunity In Experimental Eosinophilic Esophagitis In Mice. Journal of Allergy and Clinical Immunology, 2007, 119, S44.	2.9	0
59	Resistin-like molecule \hat{l}^2 regulates innate colonic function: Barrier integrity and inflammation susceptibility. Journal of Allergy and Clinical Immunology, 2006, 118, 257-268.	2.9	141
60	Epicutaneous aeroallergen exposure induces systemic TH2 immunity that predisposes to allergic nasal responses. Journal of Allergy and Clinical Immunology, 2006, 118, 62-69.	2.9	84
61	The α4bβ7â€integrin is dynamically expressed on murine eosinophils and involved in eosinophil trafficking to the intestine. Clinical and Experimental Allergy, 2006, 36, 543-553.	2.9	56
62	Eotaxin-3 and a uniquely conserved gene-expression profile in eosinophilic esophagitis. Journal of Clinical Investigation, 2006, 116, 536-547.	8.2	750
63	Upâ€regulation of insulinâ€like growth factor binding proteinâ€3 by apigenin leads to growth inhibition and apoptosis of 22Rv1 xenograft in athymic nude mice. FASEB Journal, 2005, 19, 2042-2044.	0.5	83
64	Expression and Regulation of Small Proline-Rich Protein 2 in Allergic Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2005, 32, 428-435.	2.9	59
65	Epicutaneous Antigen Exposure Primes for Experimental Eosinophilic Esophagitis in Mice. Gastroenterology, 2005, 129, 985-994.	1.3	196
66	Negative regulation of eosinophil recruitment to the lung by the chemokine monokine induced by IFN-Î ³ (Mig, CXCL9). Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1987-1992.	7.1	89
67	Expression and Regulation of a Disintegrin and Metalloproteinase (ADAM) 8 in Experimental Asthma. American Journal of Respiratory Cell and Molecular Biology, 2004, 31, 257-265.	2.9	111
68	Transcript Signatures in Experimental Asthma: Identification of STAT6-Dependent and -Independent Pathways. Journal of Immunology, 2004, 172, 1815-1824.	0.8	117
69	mechanism1 1The authors thank Andrea Lippelman for editorial assistance; Drs. Fred Finkelman, Eric Brandt, Simon Hogan, and Paul Foster for helpful discussions and/or reagents; Drs. James and Nancy		

#	Article	IF	CITATIONS
73	IL-5 Promotes Eosinophil Trafficking to the Esophagus. Journal of Immunology, 2002, 168, 2464-2469.	0.8	319
74	Differential expression of surface receptors and adhesion molecules on eosinophil subpopulations. Journal of Allergy and Clinical Immunology, 2002, 109, S226-S226.	2.9	0
75	IL-13 induces eosinophil recruitment into the lung by an IL-5– and eotaxin-dependent mechanism. Journal of Allergy and Clinical Immunology, 2001, 108, 594-601.	2.9	264
76	Pathogenesis and clinical features of eosinophilic esophagitis. Journal of Allergy and Clinical Immunology, 2001, 108, 891-894.	2.9	216
77	Gastrointestinal Eosinophils in Health and Disease. Advances in Immunology, 2001, 78, 291-328.	2.2	103
78	Gastrointestinal eosinophils. Immunological Reviews, 2001, 179, 139-155.	6.0	247
79	A pathological function for eotaxin and eosinophils in eosinophilic gastrointestinal inflammation. Nature Immunology, 2001, 2, 353-360.	14.5	297
80	Interleukin-5-mediated Allergic Airway Inflammation Inhibits the Human Surfactant Protein C Promoter in Transgenic Mice. Journal of Biological Chemistry, 2001, 276, 8453-8459.	3.4	44
81	An etiological role for aeroallergens and eosinophils in experimental esophagitis. Journal of Clinical Investigation, 2001, 107, 83-90.	8.2	567
82	Peyer's patch eosinophils: identification, characterization, and regulation by mucosal allergen exposure, interleukin-5, and eotaxin. Blood, 2000, 96, 1538-1544.	1.4	52
83	A critical role for eotaxin in experimental oral antigen-induced eosinophilic gastrointestinal allergy. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6681-6686.	7.1	169
84	Bleomycin-Mediated Pulmonary Toxicity. American Journal of Respiratory Cell and Molecular Biology, 2000, 22, 543-549.	2.9	52
85	Murine Eotaxin-2: A Constitutive Eosinophil Chemokine Induced by Allergen Challenge and IL-4 Overexpression. Journal of Immunology, 2000, 165, 5839-5846.	0.8	158
86	Peyer's patch eosinophils: identification, characterization, and regulation by mucosal allergen exposure, interleukin-5, and eotaxin. Blood, 2000, 96, 1538-1544.	1.4	2
87	Protein-A Activates Membrane Bound Multicomponent Enzyme Complex, Nadph Oxie in Human Neutrophils®. Immunopharmacology and Immunotoxicology, 1999, 21, 683-694.	2.4	1
88	Chemokines and chemokine receptors: their role in allergic airway disease. Journal of Clinical Immunology, 1999, 19, 250-265.	3.8	82
89	Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. Journal of Clinical Investigation, 1999, 103, 1719-1727.	8.2	352