
Anil Mishra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9224116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eotaxin-3 and a uniquely conserved gene-expression profile in eosinophilic esophagitis. Journal of Clinical Investigation, 2006, 116, 536-547.	8.2	750
2	An etiological role for aeroallergens and eosinophils in experimental esophagitis. Journal of Clinical Investigation, 2001, 107, 83-90. Intratracheal IL-13 induces eosinophilic esophagitis by an IL-5, eotaxin-1, and STAT6-dependent	8.2	567
3	mechanism1 1The authors thank Andrea Lippelman for editorial assistance; Drs. Fred Finkelman, Eric Brandt, Simon Hogan, and Paul Foster for helpful discussions and/or reagents; Drs. James and Nancy		

#	Article	IF	CITATIONS
19	Blockade of β-Catenin Signaling by Plant Flavonoid Apigenin Suppresses Prostate Carcinogenesis in TRAMP Mice. Cancer Research, 2007, 67, 6925-6935.	0.9	117
20	Expression and Regulation of a Disintegrin and Metalloproteinase (ADAM) 8 in Experimental Asthma. American Journal of Respiratory Cell and Molecular Biology, 2004, 31, 257-265.	2.9	111
21	Gastrointestinal Eosinophils in Health and Disease. Advances in Immunology, 2001, 78, 291-328.	2.2	103
22	Interleukin-15 Expression Is Increased in Human Eosinophilic Esophagitis and Mediates Pathogenesis in Mice. Gastroenterology, 2010, 139, 182-193.e7.	1.3	93
23	Pathogenic role of mast cells in experimental eosinophilic esophagitis. American Journal of Physiology - Renal Physiology, 2013, 304, G1087-G1094.	3.4	91
24	Negative regulation of eosinophil recruitment to the lung by the chemokine monokine induced by IFN-Î ³ (Mig, CXCL9). Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1987-1992.	7.1	89
25	Enterocyte Expression of the Eotaxin and Interleukin-5 Transgenes Induces Compartmentalized Dysregulation of Eosinophil Trafficking. Journal of Biological Chemistry, 2002, 277, 4406-4412.	3.4	86
26	Epicutaneous aeroallergen exposure induces systemic TH2 immunity that predisposes to allergic nasal responses. Journal of Allergy and Clinical Immunology, 2006, 118, 62-69.	2.9	84
27	Upâ€regulation of insulinâ€like growth factor binding proteinâ€3 by apigenin leads to growth inhibition and apoptosis of 22Rv1 xenograft in athymic nude mice. FASEB Journal, 2005, 19, 2042-2044.	0.5	83
28	Chemokines and chemokine receptors: their role in allergic airway disease. Journal of Clinical Immunology, 1999, 19, 250-265.	3.8	82
29	Indoor insect allergens are potent inducers of experimental eosinophilic esophagitis in mice. Journal of Leukocyte Biology, 2010, 88, 337-346.	3.3	80
30	Significance of para-esophageal lymph nodes in food or aeroallergen-induced iNKT cell-mediated experimental eosinophilic esophagitis. American Journal of Physiology - Renal Physiology, 2012, 302, G645-G654.	3.4	73
31	Esophageal functional impairments in experimental eosinophilic esophagitis. American Journal of Physiology - Renal Physiology, 2012, 302, G1347-G1355.	3.4	72
32	Expression and Regulation of Small Proline-Rich Protein 2 in Allergic Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2005, 32, 428-435.	2.9	59
33	Resistin-like molecule-Î ² is an allergen-induced cytokine with inflammatory and remodeling activity in the murine lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L305-L313.	2.9	59
34	The α4bβ7â€integrin is dynamically expressed on murine eosinophils and involved in eosinophil trafficking to the intestine. Clinical and Experimental Allergy, 2006, 36, 543-553.	2.9	56
35	Synergy of Interleukin (IL)-5 and IL-18 in eosinophil mediated pathogenesis of allergic diseases. Cytokine and Crowth Factor Reviews, 2019, 47, 83-98.	7.2	55
36	Trefoil Factor-2 Is an Allergen-Induced Gene Regulated by Th2 Cytokines and STAT6 in the Lung. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 458-464.	2.9	53

#	Article	IF	CITATIONS
37	Peyer's patch eosinophils: identification, characterization, and regulation by mucosal allergen exposure, interleukin-5, and eotaxin. Blood, 2000, 96, 1538-1544.	1.4	52
38	Bleomycin-Mediated Pulmonary Toxicity. American Journal of Respiratory Cell and Molecular Biology, 2000, 22, 543-549.	2.9	52
39	Pathogenesis of allergenâ€induced eosinophilic esophagitis is independent of interleukin (IL)â€13. Immunology and Cell Biology, 2013, 91, 408-415.	2.3	47
40	Invariant natural killer Tâ€cell neutralization is a possible novel therapy for human eosinophilic esophagitis. Clinical and Translational Immunology, 2014, 3, e9.	3.8	47
41	Mechanism of Eosinophilic Esophagitis. Immunology and Allergy Clinics of North America, 2009, 29, 29-40.	1.9	45
42	Interleukin-5-mediated Allergic Airway Inflammation Inhibits the Human Surfactant Protein C Promoter in Transgenic Mice. Journal of Biological Chemistry, 2001, 276, 8453-8459.	3.4	44
43	Involvement of interleukin-18 in the pathogenesis of human eosinophilic esophagitis. Clinical Immunology, 2015, 157, 103-113.	3.2	38
44	Role of interleukin-18 in the pathophysiology of allergic diseases. Cytokine and Growth Factor Reviews, 2016, 32, 31-39.	7.2	38
45	IL-15 immunotherapy is a viable strategy for COVID-19. Cytokine and Growth Factor Reviews, 2020, 54, 24-31.	7.2	38
46	IL-15 regulates fibrosis and inflammation in a mouse model of chronic pancreatitis. American Journal of Physiology - Renal Physiology, 2018, 315, G954-G965.	3.4	36
47	Neuroendocrine cells derived chemokine vasoactive intestinal polypeptide (VIP) in allergic diseases. Cytokine and Growth Factor Reviews, 2017, 38, 37-48.	7.2	35
48	Regulatory effects of IL-15 on allergen-induced airway obstruction. Journal of Allergy and Clinical Immunology, 2018, 141, 906-917.e6.	2.9	31
49	Role of eosinophils in the initiation and progression of pancreatitis pathogenesis. American Journal of Physiology - Renal Physiology, 2018, 314, G211-G222.	3.4	28
50	Chronic Pancreatitis and the Development of Pancreatic Cancer. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2020, 20, 1182-1210.	1.2	28
51	A critical role for IL-18 in transformation and maturation of naive eosinophils to pathogenic eosinophils. Journal of Allergy and Clinical Immunology, 2018, 142, 301-305.	2.9	27
52	An imbalance of esophageal effector and regulatory T cell subsets in experimental eosinophilic esophagitis in mice. American Journal of Physiology - Renal Physiology, 2009, 297, G550-G558.	3.4	25
53	Allergenâ€induced interleukinâ€18 promotes experimental eosinophilic oesophagitis in mice. Immunology and Cell Biology, 2015, 93, 849-857.	2.3	24
54	Attenuation of Allergen-, IL-13–, and TGF-α–induced Lung Fibrosis after the Treatment of rIL-15 in Mice. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 97-109.	2.9	19

#	Article	IF	CITATIONS
55	Allergen-induced resistin-like molecule-α promotes esophageal epithelial cell hyperplasia in eosinophilic esophagitis. American Journal of Physiology - Renal Physiology, 2014, 307, G499-G507.	3.4	18
56	Food-Induced Acute Pancreatitis. Digestive Diseases and Sciences, 2017, 62, 3287-3297.	2.3	16
57	Intestinal overexpression of IL â€18 promotes eosinophilsâ€mediated allergic disorders. Immunology, 2019, 157, 110-121.	4.4	16
58	Significance of Mouse Models in Dissecting the Mechanism of Human Eosinophilic Gastrointestinal Diseases (EGID). Journal of Gastroenterology and Hepatology Research, 2013, 2, 845-853.	0.2	15
59	Possible Noninvasive Biomarker of Eosinophilic Esophagitis: Clinical and Experimental Evidence. Case Reports in Gastroenterology, 2017, 10, 685-692.	0.6	13
60	Role of Vasoactive Intestinal Peptide in Promoting the Pathogenesis of Eosinophilic Esophagitis (EoE). Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 99-100.e7.	4.5	13
61	Tacrolimus (FK506) treatment protects allergenâ€, ILâ€5―and ILâ€13â€induced mucosal eosinophilia. Immunology, 2021, 163, 220-235.	4.4	12
62	Potential of Inducible Nitric Oxide Synthase as a Therapeutic Target for Allergen-Induced Airway Hyperresponsiveness: A Critical Connection to Nitric Oxide Levels and PARP Activity. Mediators of Inflammation, 2016, 2016, 1-10.	3.0	11
63	Significance of Eosinophils in Promoting Pancreatic malignancy. Journal of Gastroenterology, Pancreatology & Liver Disorders, 2017, 5, 1-9.	0.2	11
64	Food allergy and eosinophilic esophagitis in India: Lack of diagnosis. Indian Journal of Gastroenterology, 2016, 35, 72-73.	1.4	10
65	Chronic Pancreatitis Associated Acute Respiratory Failure. MOJ Immunology, 2017, 5, .	11.0	9
66	Eosinophils in the pathogenesis of pancreatic disorders. Seminars in Immunopathology, 2021, 43, 411-422.	6.1	9
67	Elements Involved In Promoting Eosinophilic Gastrointestinal Disorders. Journal of Genetic Syndromes & Gene Therapy, 2015, 06, .	0.2	8
68	Macrophages-induced IL-18–mediated eosinophilia promotes characteristics of pancreatic malignancy. Life Science Alliance, 2021, 4, e202000979.	2.8	8
69	Diagnostic and therapeutic strategies for eosinophilic esophagitis. Clinical Practice (London,) Tj ETQq1 1 0.784	314 ₀₉ BT/	Overlock 10
70	Chronic inflammation promotes epithelial-mesenchymal transition-mediated malignant phenotypes and lung injury in experimentally-induced pancreatitis. Life Sciences, 2021, 278, 119640.	4.3	6
71	Blood mRNA levels of T cells and IgE receptors are novel non-invasive biomarkers for eosinophilic esophagitis (EoE). Clinical Immunology, 2021, 227, 108752.	3.2	5
72	Immunological Responses Involved In Promoting Acute and Chronic Pancreatitis. Clinical Immunology & Research, 2017, 1, 1-8.	0.1	5

#	Article	IF	CITATIONS
73	Interleukin-18 has an Important Role in Differentiation and Maturation of Mucosal Mast Cells. , 2018, 2, .		5
74	Intestinal overexpression of interleukin (<scp>IL</scp>)â€15 promotes tissue eosinophilia and goblet cell hyperplasia. Immunology and Cell Biology, 2018, 96, 273-283.	2.3	4
75	Eosinophilic pancreatitis: a rare or unexplored disease entity?. Przeglad Gastroenterologiczny, 2020, 15, 34-38.	0.7	4
76	Vaccine efficacy in mutant SARS-CoV-2 variants. , 2021, 4, 1-12.		4
77	Experimental Modeling of Eosinophil-Associated Diseases. Methods in Molecular Biology, 2021, 2241, 275-291.	0.9	3
78	Significance of Interleukin (IL)-15 in IgE associated eosinophilic Esophagitis (EoE). International Journal of Basic and Clinical Immunology, 2019, 2, 1-12.	0.0	3
79	Role of ILâ€18â€transformed CD274â€expressing eosinophils in promoting airway obstruction in experimental asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, , .	5.7	3
80	Peyer's patch eosinophils: identification, characterization, and regulation by mucosal allergen exposure, interleukin-5, and eotaxin. Blood, 2000, 96, 1538-1544.	1.4	2
81	Immunomodulatory effects of tacrolimus (FK506) for the treatment of allergic diseases. , 2018, 1, 5-13.		2
82	Protein-A Activates Membrane Bound Multicomponent Enzyme Complex, Nadph Oxie in Human Neutrophils®. Immunopharmacology and Immunotoxicology, 1999, 21, 683-694.	2.4	1
83	IL-18 overexpression promotes eosinophils-mediated peanut-induced intestinal allergy. Journal of Allergy and Clinical Immunology, 2019, 143, AB254.	2.9	1
84	Differential expression of surface receptors and adhesion molecules on eosinophil subpopulations. Journal of Allergy and Clinical Immunology, 2002, 109, S226-S226.	2.9	0
85	Critical Role For Adaptive T Cell Immunity In Experimental Eosinophilic Esophagitis In Mice. Journal of Allergy and Clinical Immunology, 2007, 119, S44.	2.9	0
86	Interleukin (IL)-15 significance in aging associated asthma pathogenesis. , 2020, 3, .		0
87	Possible novel non-invasive biomarker for inflammation mediated pancreatic malignancy. International Journal of Basic and Clinical Immunology, 2020, 3, 1-8.	0.0	0
88	Eosinophils and T cell surface molecule transcript levels in the blood differentiate eosinophilic esophagitis (EoE) from GERD. International Journal of Basic and Clinical Immunology, 2021, 4, 1-8.	0.0	0
89	Molecules involved in the development of Barrett's esophagus (BE) phenotype in chronic eosinophilic esophagitis (EoE). American Journal of Physiology - Renal Physiology, 2022, , .	3.4	0