Hai-Chun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9223777/publications.pdf

Version: 2024-02-01

218677 128289 3,866 67 26 h-index citations g-index papers

68 68 68 7564 docs citations times ranked citing authors all docs

60

#	Article	IF	CITATIONS
1	Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney International, 2020, 98, 219-227.	5.2	1,388
2	Models of chronic kidney disease. Drug Discovery Today: Disease Models, 2010, 7, 13-19.	1.2	232
3	AKI and Collapsing Glomerulopathy Associated with COVID-19 and APOL 1 High-Risk Genotype. Journal of the American Society of Nephrology: JASN, 2020, 31, 1688-1695.	6.1	204
4	The PPARÎ ³ Agonist Pioglitazone Ameliorates Aging-Related Progressive Renal Injury. Journal of the American Society of Nephrology: JASN, 2009, 20, 2380-2388.	6.1	159
5	Regression of Glomerulosclerosis with High-Dose Angiotensin Inhibition Is Linked to Decreased Plasminogen Activator Inhibitor-1. Journal of the American Society of Nephrology: JASN, 2005, 16, 966-976.	6.1	137
6	Cell Senescence in the Aging Kidney. Journal of the American Society of Nephrology: JASN, 2010, 21, 1436-1439.	6.1	135
7	ASK1 contributes to fibrosis and dysfunction in models of kidney disease. Journal of Clinical Investigation, 2018, 128, 4485-4500.	8.2	104
8	Parietal Epithelial Cell Activation Marker in Early Recurrence of FSGS in the Transplant. Clinical Journal of the American Society of Nephrology: CJASN, 2012, 7, 1852-1858.	4.5	99
9	A perspective on chronic kidney disease progression. American Journal of Physiology - Renal Physiology, 2017, 312, F375-F384.	2.7	98
10	Angiotensin type 2 receptor actions contribute to angiotensin type 1 receptor blocker effects on kidney fibrosis. American Journal of Physiology - Renal Physiology, 2010, 298, F683-F691.	2.7	67
11	Macrophage Cyclooxygenase-2 Protects Against Development of Diabetic Nephropathy. Diabetes, 2017, 66, 494-504.	0.6	66
12	Retinoic Acid Signaling Coordinates Macrophage-Dependent Injury and Repair after AKI. Journal of the American Society of Nephrology: JASN, 2016, 27, 495-508.	6.1	65
13	Renal fibrosis is not reduced by blocking transforming growth factor-Î ² signaling in matrix-producing interstitial cells. Kidney International, 2015, 88, 503-514.	5.2	61
14	Blocking TGF-Î ² and Î ² -Catenin Epithelial Crosstalk Exacerbates CKD. Journal of the American Society of Nephrology: JASN, 2017, 28, 3490-3503.	6.1	50
15	Fibrosis and renal aging. Kidney International Supplements, 2014, 4, 75-78.	14.2	48
16	Specific deletion of glycogen synthase kinase- $3\hat{l}^2$ in the renal proximal tubule protects against acute nephrotoxic injury in mice. Kidney International, 2012, 82, 1000-1009.	5.2	47
17	Lysophosphatidic Acid Receptor Antagonism Protects against Diabetic Nephropathy in a Type 2 Diabetic Model. Journal of the American Society of Nephrology: JASN, 2017, 28, 3300-3311.	6.1	47
18	Cells Derived from Young Bone Marrow Alleviate Renal Aging. Journal of the American Society of Nephrology: JASN, 2011, 22, 2028-2036.	6.1	43

#	Article	IF	CITATIONS
19	Residual Cardiovascular Risk in Chronic Kidney Disease: Role of High-density Lipoprotein. Archives of Medical Research, 2015, 46, 379-391.	3.3	42
20	Al applications in renal pathology. Kidney International, 2021, 99, 1309-1320.	5.2	42
21	IL-6-mediated hepatocyte production is the primary source of plasma and urine neutrophil gelatinase–associated lipocalin during acute kidney injury. Kidney International, 2020, 97, 966-979.	5.2	40
22	Capillary rarefaction is more closely associated with CKD progression after cisplatin, rhabdomyolysis, and ischemia-reperfusion-induced AKI than renal fibrosis. American Journal of Physiology - Renal Physiology, 2019, 317, F1383-F1397.	2.7	38
23	Tubulointerstitial fibrosis can sensitize the kidney to subsequent glomerular injury. Kidney International, 2017, 92, 1395-1403.	5.2	36
24	Kidneys. Current Opinion in Nephrology and Hypertension, 2016, 25, 174-179.	2.0	35
25	Atherosclerosis following renal injury is ameliorated by pioglitazone and losartan via macrophage phenotype. Atherosclerosis, 2015, 242, 56-64.	0.8	30
26	A mechanistic investigation of thrombotic microangiopathy associated with IV abuse of Opana ER. Blood, 2017, 129, 896-905.	1.4	30
27	Matching Human Unilateral AKI, a Reverse Translational Approach to Investigate Kidney Recovery after Ischemia. Journal of the American Society of Nephrology: JASN, 2019, 30, 990-1005.	6.1	30
28	Cell-free hemoglobin augments acute kidney injury during experimental sepsis. American Journal of Physiology - Renal Physiology, 2019, 317, F922-F929.	2.7	26
29	Pyridoxamine reduces postinjury fibrosis and improves functional recovery after acute kidney injury. American Journal of Physiology - Renal Physiology, 2016, 311, F268-F277.	2.7	25
30	Animal models of regression/progression of kidney disease. Drug Discovery Today: Disease Models, 2014, 11, 45-51.	1.2	24
31	DDR1 contributes to kidney inflammation and fibrosis by promoting the phosphorylation of BCR and STAT3. JCI Insight, 2022, 7, .	5.0	24
32	Adapting decarbonylation chemistry for the development of prodrugs capable of <i>in vivo</i> delivery of carbon monoxide utilizing sweeteners as carrier molecules. Chemical Science, 2021, 12, 10649-10654.	7.4	23
33	CircleNet: Anchor-Free Glomerulus Detection with Circle Representation. Lecture Notes in Computer Science, 2020, 2020, 35-44.	1.3	23
34	Vitronectin-binding PAI-1 protects against the development of cardiac fibrosis through interaction with fibroblasts. Laboratory Investigation, 2014, 94, 633-644.	3.7	22
35	Mechanisms of Disease Reversal in Focal and Segmental Glomerulosclerosis. Advances in Chronic Kidney Disease, 2014, 21, 442-447.	1.4	20
36	Fibroblast-specific plasminogen activator inhibitor-1 depletion ameliorates renal interstitial fibrosis after unilateral ureteral obstruction. Nephrology Dialysis Transplantation, 2019, 34, 2042-2050.	0.7	20

#	Article	IF	Citations
37	Cross Talk from Tubules to Glomeruli. Toxicologic Pathology, 2018, 46, 944-948.	1.8	19
38	Tubular \hat{I}^2 -catenin and FoxO3 interactions protect in chronic kidney disease. JCI Insight, 2020, 5, .	5.0	19
39	Chronic kidney disease alters lipid trafficking and inflammatory responses in macrophages: effects of liver X receptor agonism. BMC Nephrology, 2018, 19, 17.	1.8	16
40	Kidney as modulator and target of "good/bad―HDL. Pediatric Nephrology, 2019, 34, 1683-1695.	1.7	14
41	Protocol for multimodal analysis of human kidney tissue by imaging mass spectrometry and CODEX multiplexed immunofluorescence. STAR Protocols, 2021, 2, 100747.	1.2	14
42	Quantification and Comparison of Anti-Fibrotic Therapies by Polarized SRM and SHG-Based Morphometry in Rat UUO Model. PLoS ONE, 2016, 11, e0156734.	2.5	14
43	Kidney Regeneration in Mammals. Nephron Experimental Nephrology, 2014, 126, 50-53.	2.2	13
44	Renal lymphatic vessel dynamics. American Journal of Physiology - Renal Physiology, 2020, 319, F1027-F1036.	2.7	13
45	Stabilization of hypoxia-inducible factor ameliorates glomerular injury sensitization after tubulointerstitial injury. Kidney International, 2021, 99, 620-631.	5. 2	13
46	Biotic Supplements in Patients With Chronic Kidney Disease: Meta-Analysis of Randomized Controlled Trials., 2021,,.		13
47	Low-grade albuminuria in pulmonary arterial hypertension. Pulmonary Circulation, 2019, 9, 204589401882456.	1.7	11
48	Kidney injury-mediated disruption of intestinal lymphatics involves dicarbonyl-modified lipoproteins. Kidney International, 2021, 100, 585-596.	5. 2	11
49	Effects of combination PPAR \hat{I}^3 agonist and angiotensin receptor blocker on glomerulosclerosis. Laboratory Investigation, 2016, 96, 602-609.	3.7	10
50	Map3D: Registration-Based Multi-Object Tracking on 3D Serial Whole Slide Images. IEEE Transactions on Medical Imaging, 2021, 40, 1924-1933.	8.9	10
51	Instance segmentation for whole slide imaging: end-to-end or detect-then-segment. Journal of Medical Imaging, 2021, 8, 014001.	1.5	10
52	Lipopolysaccharide Pretreatment Prevents Medullary Vascular Congestion following Renal Ischemia by Limiting Early Reperfusion of the Medullary Circulation. Journal of the American Society of Nephrology: JASN, 2022, 33, 769-785.	6.1	10
53	Mechanisms of Scarring in Focal Segmental Glomerulosclerosis. Journal of Histochemistry and Cytochemistry, 2019, 67, 623-632.	2.5	9
54	Lipoprotein modulation of proteinuric renal injury. Laboratory Investigation, 2019, 99, 1107-1116.	3.7	9

#	Article	IF	CITATIONS
55	High-Density Lipoproteins in Kidney Disease. International Journal of Molecular Sciences, 2021, 22, 8201.	4.1	9
56	Blocking cell cycle progression through CDK4/6 protects against chronic kidney disease. JCI Insight, 2022, 7, .	5.0	9
57	The authors reply. Kidney International, 2020, 98, 232-233.	5.2	8
58	Kidney Injury Causes Accumulation of Renal Sodium That Modulates Renal Lymphatic Dynamics. International Journal of Molecular Sciences, 2022, 23, 1428.	4.1	7
59	Quantitative Super-Resolution Microscopy Reveals Promoting Mitochondrial Interconnectivity Protects against AKI. Kidney360, 2021, 2, 1892-1907.	2.1	6
60	Angiotensin receptor blocker vs ACE inhibitor effects on HDL functionality in patients on maintenance hemodialysis. Nutrition, Metabolism and Cardiovascular Diseases, 2018, 28, 582-591.	2.6	5
61	Increased dishevelled associated activator of morphogenesis 2, a new podocyte-associated protein, in diabetic nephropathy. Nephrology Dialysis Transplantation, 2021, 36, 1006-1016.	0.7	4
62	Glo-In-One: holistic glomerular detection, segmentation, and lesion characterization with large-scale web image mining. Journal of Medical Imaging, 2022, 9, .	1.5	4
63	Urinary apoAl: novel marker of renal disease?. Pediatric Nephrology, 2019, 34, 2425-2426.	1.7	2
64	Holistic fine-grained global glomerulosclerosis characterization: from detection to unbalanced classification. Journal of Medical Imaging, 2022, 9, 014005.	1.5	2
65	Selonsertib Enhances Kidney Protection Beyond Standard of Care in a Hypertensive, Secondary Glomerulosclerosis CKD Model. Kidney360, 0, , 10.34067/KID.0001032022.	2.1	2
66	Cell-Mediated Glomerulonephritis Without Immune Complexes in Native Kidney Biopsies: A Report of 7 Cases. American Journal of Kidney Diseases, 2021, , .	1.9	0
67	Podocyte-Related Mechanisms Underlying Survival Benefit of Long-Term Angiotensin Receptor Blocker. International Journal of Molecular Sciences, 2022, 23, 6018.	4.1	O