Graeme Mardon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9223620/publications.pdf

Version: 2024-02-01

26 papers 1,014 citations

567281 15 h-index 26 g-index

26 all docs

 $\begin{array}{c} 26 \\ \text{docs citations} \end{array}$

times ranked

26

1840 citing authors

#	Article	IF	CITATIONS
1	Enabling the genomic revolution in Africa. Science, 2014, 344, 1346-1348.	12.6	361
2	Mutations in SPATA7 Cause Leber Congenital Amaurosis and Juvenile Retinitis Pigmentosa. American Journal of Human Genetics, 2009, 84, 380-387.	6.2	111
3	Genetic control of retinal specification and determination in Drosophila. International Journal of Developmental Biology, 2004, 48, 913-924.	0.6	77
4	Spata7 is a retinal ciliopathy gene critical for correct RPGRIP1 localization and protein trafficking in the retina. Human Molecular Genetics, 2015, 24, 1584-1601.	2.9	54
5	SPATA7 maintains a novel photoreceptor-specific zone in the distal connecting cilium. Journal of Cell Biology, 2018, 217, 2851-2865.	5.2	46
6	Whole-Exome Sequencing Reveals Uncaptured Variation and Distinct Ancestry in the Southern African Population of Botswana. American Journal of Human Genetics, 2018, 102, 731-743.	6.2	38
7	Dynamic Rewiring of the Drosophila Retinal Determination Network Switches Its Function from Selector to Differentiation. PLoS Genetics, 2013, 9, e1003731.	3.5	37
8	Signaling in the third dimension: The peripodial epithelium in eye disc development. Developmental Dynamics, 2009, 238, 2139-2148.	1.8	32
9	The collaborative African genomics network training program: a trainee perspective on training the next generation of African scientists. Genetics in Medicine, 2017, 19, 826-833.	2.4	29
10	Regulation of Drosophila Eye Development by the Transcription Factor Sine oculis. PLoS ONE, 2014, 9, e89695.	2.5	29
11	Senseless is required for pupal retinal development inDrosophila. Genesis, 2004, 38, 182-194.	1.6	21
12	Conditional loss of Spata7 in photoreceptors causes progressive retinal degeneration in mice. Experimental Eye Research, 2018, 166, 120-130.	2.6	21
13	POU6f1 Mediates Neuropeptide-Dependent Plasticity in the Adult Brain. Journal of Neuroscience, 2018, 38, 1443-1461.	3.6	20
14	Conditional loss of Kcnj13 in the retinal pigment epithelium causes photoreceptor degeneration. Experimental Eye Research, 2018, 176, 219-226.	2.6	17
15	A Genetic Screen in Drosophila for Genes Interacting With senseless During Neuronal Development Identifies the Importin moleskin. Genetics, 2007, 175, 125-141.	2.9	16
16	Eyes Absent Tyrosine Phosphatase Activity Is Not Required for Drosophila Development or Survival. PLoS ONE, 2013, 8, e58818.	2.5	16
17	Drosophila Eyes Absent Is Required for Normal Cone and Pigment Cell Development. PLoS ONE, 2014, 9, e102143.	2.5	15
18	Distinct Biochemical Activities of Eyes absent During Drosophila Eye Development. Scientific Reports, 2016, 6, 23228.	3.3	14

#	Article	IF	Citations
19	Drosophila Signal Peptidase Complex Member Spase 12 Is Required for Development and Cell Differentiation. PLoS ONE, 2013, 8, e60908.	2.5	13
20	The Collaborative African Genomics Network (CAfGEN): Applying Genomic technologies to probe host factors important to the progression of HIV and HIV-tuberculosis infection in sub-Saharan Africa. AAS Open Research, 2018, 1, 3.	1.5	10
21	Identification of novel direct targets of Drosophila Sine oculis and Eyes absent by integration of genome-wide data sets. Developmental Biology, 2016, 415, 157-167.	2.0	9
22	Conditional knockout of retinal determination genes in differentiating cells in <i>Drosophila</i> FEBS Journal, 2016, 283, 2754-2766.	4.7	8
23	Integrative genomic analysis reveals novel regulatory mechanisms ofeyelessduringDrosophilaeye development. Nucleic Acids Research, 2018, 46, 11743-11758.	14.5	8
24	MAPK Target Sites of Eyes Absent Are Not Required for Eye Development or Survival in Drosophila. PLoS ONE, 2012, 7, e50776.	2.5	7
25	Unmapped exome reads implicate a role for Anelloviridae in childhood HIV-1 long-term non-progression. Npj Genomic Medicine, 2021, 6, 24.	3.8	3
26	Spata7 is required for maintenance of the retinal connecting cilium. Scientific Reports, 2022, 12, 5575.	3.3	2