
Markus Thomas Rojewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9223451/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Hexon modification of human adenovirus type 5 vectors enables efficient transduction of human multipotent mesenchymal stromal cells. Molecular Therapy - Methods and Clinical Development, 2022, 25, 96-110.	4.1	2
2	Independent Side-by-Side Validation and Comparison of 4 Serological Platforms for SARS-CoV-2 Antibody Testing. Journal of Infectious Diseases, 2021, 223, 796-801.	4.0	51
3	Characterization of the SARS-CoV-2 Neutralization Potential of COVID-19–Convalescent Donors. Journal of Immunology, 2021, 206, 2614-2622.	0.8	22
4	Transduction Enhancers Enable Efficient Human Adenovirus Type 5-Mediated Gene Transfer into Human Multipotent Mesenchymal Stromal Cells. Viruses, 2021, 13, 1136.	3.3	4
5	Osteoarthritic Milieu Affects Adiposeâ€Derived Mesenchymal Stromal Cells. Journal of Orthopaedic Research, 2020, 38, 336-347.	2.3	13
6	CD90 Is Dispensable for White and Beige/Brown Adipocyte Differentiation. International Journal of Molecular Sciences, 2020, 21, 7907.	4.1	2
7	Early efficacy evaluation of mesenchymal stromal cells (MSC) combined to biomaterials to treat long bone non-unions. Injury, 2020, 51, S63-S73.	1.7	32
8	Translation of a standardized manufacturing protocol for mesenchymal stromal cells: A systematic comparison of validation and manufacturing data. Cytotherapy, 2019, 21, 468-482.	0.7	33
9	Feasibility and safety of treating non-unions in tibia, femur and humerus with autologous, expanded, bone marrow-derived mesenchymal stromal cells associated with biphasic calcium phosphate biomaterials in a multicentric, non-comparative trial. Biomaterials, 2019, 196, 100-108.	11.4	87
10	A Subpopulation of Stromal Cells Controls Cancer Cell Homing to the Bone Marrow. Cancer Research, 2018, 78, 129-142.	0.9	32
11	Systemic recovery and therapeutic effects of transplanted allogenic and xenogenic mesenchymal stromal cells in a rat blunt chest trauma model. Cytotherapy, 2018, 20, 218-231.	0.7	9
12	ATP promotes immunosuppressive capacities of mesenchymal stromal cells by enhancing the expression of indoleamine dioxygenase. Immunity, Inflammation and Disease, 2018, 6, 448-455.	2.7	11
13	Autologous Mesenchymal Stroma Cells Are Superior to Allogeneic Ones in Bone Defect Regeneration. International Journal of Molecular Sciences, 2018, 19, 2526.	4.1	15
14	Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial. Stem Cell Research and Therapy, 2018, 9, 213.	5.5	132
15	Leukemic progenitor cells are susceptible to targeting by stimulated cytotoxic <scp>T</scp> cells against immunogenic leukemiaâ€associated antigens. International Journal of Cancer, 2015, 137, 2083-2092.	5.1	19
16	Standardization of Good Manufacturing Practice–compliant production of bone marrow–derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy, 2015, 17, 128-139.	0.7	118
17	TSG-6 Released from Intradermally Injected Mesenchymal Stem Cells Accelerates Wound Healing and Reduces Tissue Fibrosis in Murine Full-Thickness Skin Wounds. Journal of Investigative Dermatology, 2014, 134, 526-537.	0.7	195
18	S100A4 and Uric Acid Promote Mesenchymal Stromal Cell Induction of IL-10+/IDO+ Lymphocytes. Journal of Immunology, 2014, 192, 6102-6110.	0.8	35

#	Article	IF	CITATIONS
19	Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components. Cytotherapy, 2012, 14, 540-554.	0.7	246
20	Efficiency of Leukemic Stem Cell Separation From Patients with Acute Myeloid Leukemia. Blood, 2011, 118, 4997-4997.	1.4	1
21	The Inhibitory Effect of Cyclosporine A and Prednisolone on Both Cytotoxic CD8+ T Cells and CD4+CD25+ Regulatory T Cells. Current Signal Transduction Therapy, 2009, 4, 222-233.	0.5	1
22	Peptide Vaccination Induces Dynamic Changes in CD4+ and CD8+ T Cell Subsets: Report on the First Peptide Vaccination Trial in Patients with Chronic Lymphocytic Leukemia (CLL). Blood, 2008, 112, 3159-3159.	1.4	2
23	Immunological and Clinical Responses in Patients with Acute Myeloid Leukemia (AML), Myelodysplastic Syndrome (MDS), Multiple Myeloma (MM) and Chronic Lymphocytic Leukemia (CLL) after RHAMM-R3 Peptide Vaccination Blood, 2007, 110, 1806-1806.	1.4	9
24	Imatinib Inhibits Both CD4+ T Regulatory Cells and CD8+ T Lymphocytes Specifically Directed Against the Leukemia-Associated Antigen RHAMM/CD168 Blood, 2006, 108, 2201-2201.	1.4	0
25	RHAMM/CD168-R3 Peptide Vaccination of Patients with Acute Myeloid Leukemia (AML), Myelodysplastic Syndrome (MDS) and Multiple Myeloma (MM) Elicits Immunological and Clinical Responses Blood, 2006, 108, 409-409.	1.4	0
26	Corrigendum to: Depolarisation of the plasma membrane in the arsenic trioxide (As2O3)- and anti-CD95-induced apoptosis in myeloid cells (FEBS 29005) [FEBS Letters 578 (2004) 85-89]. FEBS Letters, 2005, 579, 3866-3866.	2.8	0
27	Depolarisation of the plasma membrane in the arsenic trioxide (As2O3)-and anti-CD95-induced apoptosis in myeloid cells. FEBS Letters, 2004, 578, 85-89.	2.8	23
28	The K+ channel openers diazoxide and NS1619 induce depolarization of mitochondria and have differential effects on cell Ca2+ in CD34+ cell line KG-1a. Experimental Hematology, 2003, 31, 815-823.	0.4	41
29	Arsenic trioxide-induced apoptosis is independent of CD95 in lymphatic cell lines. Oncology Reports, 0,	2.6	3