## Tatsuya Kobayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9223189/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature, 2010, 464,<br>852-857.                                                                                                       | 27.8 | 980       |
| 2  | Osteoblast Precursors, but Not Mature Osteoblasts, Move into Developing and Fractured Bones along with Invading Blood Vessels. Developmental Cell, 2010, 19, 329-344.                                            | 7.0  | 773       |
| 3  | Hypoxia in cartilage: HIF-11 $\pm$ is essential for chondrocyte growth arrest and survival. Genes and Development, 2001, 15, 2865-2876.                                                                          | 5.9  | 690       |
| 4  | Endogenous Bone Marrow MSCs Are Dynamic, Fate-Restricted Participants in Bone Maintenance and Regeneration. Cell Stem Cell, 2012, 10, 259-272.                                                                   | 11.1 | 551       |
| 5  | Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nature Medicine, 2008, 14, 306-314.                                                                     | 30.7 | 532       |
| 6  | Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1949-1954.                          | 7.1  | 315       |
| 7  | PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps.<br>Development (Cambridge), 2002, 129, 2977-2986.                                                              | 2.5  | 272       |
| 8  | Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1-34. Journal of Clinical Investigation, 2005, 115, 2402-2411.                    | 8.2  | 252       |
| 9  | BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. Development (Cambridge), 2008, 135, 3801-3811.                                                          | 2.5  | 243       |
| 10 | Indian hedgehog stimulates periarticular chondrocyte differentiation to regulate growth plate length independently of PTHrP. Journal of Clinical Investigation, 2005, 115, 1734-1742.                            | 8.2  | 227       |
| 11 | Stimulatory effect of bone morphogenetic protein-2 on osteoclast-like cell formation and bone-resorbing activity. Journal of Bone and Mineral Research, 1995, 10, 1681-1690.                                     | 2.8  | 197       |
| 12 | Wnt inhibitors <i>Dkk1</i> and <i>Sost</i> are downstream targets of BMP signaling through the type<br>IA receptor (BMPRIA) in osteoblasts. Journal of Bone and Mineral Research, 2010, 25, 200-210.             | 2.8  | 190       |
| 13 | Targeted ablation of the PTH/PTHrP receptor in osteocytes impairs bone structure and homeostatic calcemic responses. Journal of Endocrinology, 2011, 209, 21-32.                                                 | 2.6  | 175       |
| 14 | BMP signaling stimulates cellular differentiation at multiple steps during cartilage development.<br>Proceedings of the National Academy of Sciences of the United States of America, 2005, 102,<br>18023-18027. | 7.1  | 160       |
| 15 | Disruption of BMP Signaling in Osteoblasts Through Type IA Receptor (BMPRIA) Increases Bone Mass.<br>Journal of Bone and Mineral Research, 2008, 23, 2007-2017.                                                  | 2.8  | 156       |
| 16 | Chondrocyte-Specific MicroRNA-140 Regulates Endochondral Bone Development and Targets<br><i>Dnpep</i> To Modulate Bone Morphogenetic Protein Signaling. Molecular and Cellular Biology,<br>2011, 31, 3019-3028.  | 2.3  | 149       |
| 17 | Minireview: Transcriptional Regulation in Development of Bone. Endocrinology, 2005, 146, 1012-1017.                                                                                                              | 2.8  | 141       |
| 18 | In Vivo Evidence That BMP Signaling Is Necessary for Apoptosis in the Mouse Limb. Developmental<br>Biology, 2002, 249, 108-120.                                                                                  | 2.0  | 137       |

ΤΑΤΣΟΥΑ ΚΟΒΑΥΑΣΗΙ

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Deletion of Vhlh in chondrocytes reduces cell proliferation and increases matrix deposition during growth plate development. Development (Cambridge), 2004, 131, 2497-2508.                                                                              | 2.5  | 119       |
| 20 | PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps.<br>Development (Cambridge), 2002, 129, 2977-86.                                                                                                        | 2.5  | 118       |
| 21 | ADAMTS-7, a Direct Target of PTHrP, Adversely Regulates Endochondral Bone Growth by Associating with and Inactivating GEP Growth Factor. Molecular and Cellular Biology, 2009, 29, 4201-4219.                                                            | 2.3  | 100       |
| 22 | Chondrocyte-Specific Knockout of the G Protein Gsα Leads to Epiphyseal and Growth Plate<br>Abnormalities and Ectopic Chondrocyte Formation. Journal of Bone and Mineral Research, 2005, 20,<br>663-671.                                                  | 2.8  | 95        |
| 23 | Parathyroid hormone/parathyroid hormone-related protein receptor signaling is required for<br>maintenance of the growth plate in postnatal life. Proceedings of the National Academy of Sciences of<br>the United States of America, 2011, 108, 191-196. | 7.1  | 89        |
| 24 | MicroRNAs involved in bone formation. Cellular and Molecular Life Sciences, 2014, 71, 4747-4761.                                                                                                                                                         | 5.4  | 89        |
| 25 | Gain-of-function mutation of microRNA-140 in human skeletal dysplasia. Nature Medicine, 2019, 25, 583-590.                                                                                                                                               | 30.7 | 86        |
| 26 | Disruption of PTH Receptor 1 in T Cells Protects against PTH-Induced Bone Loss. PLoS ONE, 2010, 5, e12290.                                                                                                                                               | 2.5  | 78        |
| 27 | let-7 and miR-140 microRNAs coordinately regulate skeletal development. Proceedings of the National<br>Academy of Sciences of the United States of America, 2013, 110, E3291-300.                                                                        | 7.1  | 78        |
| 28 | Sox9 Is Upstream of MicroRNA-140 in Cartilage. Applied Biochemistry and Biotechnology, 2012, 166, 64-71.                                                                                                                                                 | 2.9  | 74        |
| 29 | microRNAs in Cartilage Development, Homeostasis, and Disease. Current Osteoporosis Reports, 2014, 12, 410-419.                                                                                                                                           | 3.6  | 74        |
| 30 | Thyroid hormone stimulates osteoclast differentiation by a mechanism independent of RANKL-RANK interaction. Journal of Cellular Physiology, 2004, 201, 17-25.                                                                                            | 4.1  | 64        |
| 31 | gp130-Mediated Signaling Is Necessary for Normal Osteoblastic Function in Vivo and in Vitro.<br>Endocrinology, 2004, 145, 1376-1385.                                                                                                                     | 2.8  | 60        |
| 32 | A Novel Transgenic Mouse Model to Study the Osteoblast Lineage <i>in Vivo</i> . Annals of the New<br>York Academy of Sciences, 2007, 1116, 149-164.                                                                                                      | 3.8  | 59        |
| 33 | Parathyroid hormone 1 receptor is essential to induce FGF23 production and maintain systemic mineral ion homeostasis. FASEB Journal, 2016, 30, 428-440.                                                                                                  | 0.5  | 59        |
| 34 | Possible discrimination of Gitelman's syndrome from Bartter's syndrome by renal clearance study:<br>Report of two cases. American Journal of Kidney Diseases, 1995, 25, 637-641.                                                                         | 1.9  | 56        |
| 35 | Molecular cloning of cDNA encoding a bovine selenoprotein P-like protein containing 12 selenocysteines and a (His-Pro) rich domain insertion, and its regional expression. Molecular Brain Research, 1995, 30, 301-311.                                  | 2.3  | 54        |
| 36 | MicroRNA-140 Provides Robustness to the Regulation of Hypertrophic Chondrocyte Differentiation by the PTHrP-HDAC4 Pathway. Journal of Bone and Mineral Research, 2015, 30, 1044-1052.                                                                    | 2.8  | 51        |

ΤΑΤΣΟΥΑ ΚΟΒΑΥΑΣΗΙ

| #  | Article                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Adenomatous polyposis coli-mediated control of β-catenin is essential for both chondrogenic and osteogenic differentiation of skeletal precursors. BMC Developmental Biology, 2009, 9, 26.                                                                              | 2.1  | 50        |
| 38 | Polarity Acquisition in Cortical Neurons Is Driven by Synergistic Action of Sox9-Regulated Wwp1 and<br>Wwp2 E3ÂUbiquitin Ligases and Intronic miR-140. Neuron, 2018, 100, 1097-1115.e15.                                                                                | 8.1  | 50        |
| 39 | Polycomb repressive complex 2 regulates skeletal growth by suppressing Wnt and TGF-Î <sup>2</sup> signalling.<br>Nature Communications, 2016, 7, 12047.                                                                                                                 | 12.8 | 47        |
| 40 | Overview of Skeletal Development. Methods in Molecular Biology, 2014, 1130, 3-12.                                                                                                                                                                                       | 0.9  | 46        |
| 41 | G-protein stimulatory subunit alpha and Gq/11α G-proteins are both required to maintain quiescent stem-like chondrocytes. Nature Communications, 2014, 5, 3673.                                                                                                         | 12.8 | 41        |
| 42 | PTHrP targets HDAC4 and HDAC5 to repress chondrocyte hypertrophy. JCl Insight, 2019, 4, .                                                                                                                                                                               | 5.0  | 33        |
| 43 | Early postnatal ablation of the microRNA-processing enzyme, Drosha, causes chondrocyte death and<br>impairs the structural integrity of the articular cartilage. Osteoarthritis and Cartilage, 2015, 23,<br>1214-1220.                                                  | 1.3  | 32        |
| 44 | Parathyroid hormone gene polymorphisms in primary hyperparathyroidism. Clinical Endocrinology,<br>1999, 50, 583-588.                                                                                                                                                    | 2.4  | 27        |
| 45 | Ras signaling regulates osteoprogenitor cell proliferation and bone formation. Cell Death and Disease, 2016, 7, e2405-e2405.                                                                                                                                            | 6.3  | 25        |
| 46 | Reduced expression of the PTH/PTHrP receptor during development of the mammary gland influences the function of the nipple during lactation. Developmental Dynamics, 2005, 233, 794-803.                                                                                | 1.8  | 24        |
| 47 | Distinct molecular pathways mediate Mycn and Myc-regulated miR-17-92 microRNA action in Feingold syndrome mouse models. Nature Communications, 2018, 9, 1352.                                                                                                           | 12.8 | 24        |
| 48 | Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormoneâ€related peptide,<br>negatively regulates chondrogenesis and endochondral ossification <i>via</i> associating with<br>progranulin growth factor. FASEB Journal, 2016, 30, 2741-2754. | 0.5  | 21        |
| 49 | Vitamin D Receptor Genotype Is Associated with Cortical Bone Loss in Japanese Patients with Primary<br>Hyperparathyroidism Endocrine Journal, 1998, 45, 123-125.                                                                                                        | 1.6  | 20        |
| 50 | Deconvolution of seed and RNA-binding protein crosstalk in RNAi-based functional genomics. Nature<br>Genetics, 2018, 50, 657-661.                                                                                                                                       | 21.4 | 18        |
| 51 | Cloning of mouse diastrophic dysplasia sulfate transporter gene induced during osteoblast<br>differentiation by bone morphogenetic protein-2. Gene, 1997, 198, 341-349.                                                                                                 | 2.2  | 13        |
| 52 | Analysis of bovine selenoprotein P-like protein gene and availability of metal responsive element (MRE)<br>located in its promoter. Gene, 1997, 199, 211-217.                                                                                                           | 2.2  | 13        |
| 53 | Evaluation of Changes in Bone Density and Biochemical Parameters after Parathyroidectomy in Primary Hyperparathyroidism Endocrine Journal, 2000, 47, 231-237.                                                                                                           | 1.6  | 13        |
| 54 | PCSK5 mutation in a patient with the VACTERL association. BMC Research Notes, 2015, 8, 228.                                                                                                                                                                             | 1.4  | 12        |

Τατςυγά Κοβαγάςηι

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | MicroRNAs in cartilage development and dysplasia. Bone, 2020, 140, 115564.                                                                                                                           | 2.9 | 12        |
| 56 | Clinical and Biochemical Presentation of Primary Hyperparathyroidism in Kansai District of Japan<br>Endocrine Journal, 1997, 44, 595-601.                                                            | 1.6 | 11        |
| 57 | Cloning and Characterization of the 5â€2-Flanking Region of the Mouse Diastrophic Dysplasia Sulfate<br>Transporter Gene. Biochemical and Biophysical Research Communications, 1997, 238, 738-742.    | 2.1 | 11        |
| 58 | Bone resorption facilitates osteoblastic bone metastatic colonization by cooperation of insulinâ€ŀike<br>growth factor and hypoxia. Cancer Science, 2014, 105, 553-559.                              | 3.9 | 11        |
| 59 | Bone Is a Major Target of PTH/PTHrP Receptor Signaling in Regulation of Fetal Blood Calcium<br>Homeostasis. Endocrinology, 2015, 156, 2774-2780.                                                     | 2.8 | 11        |
| 60 | Overview of Skeletal Development. Methods in Molecular Biology, 2021, 2230, 3-16.                                                                                                                    | 0.9 | 9         |
| 61 | Lin28a overexpression reveals the role of Erk signaling in articular cartilage development.<br>Development (Cambridge), 2018, 145, .                                                                 | 2.5 | 8         |
| 62 | Reversing the miRNA -5p/-3p stoichiometry reveals physiological roles and targets of miR-140 miRNAs.<br>Rna, 2022, 28, 854-864.                                                                      | 3.5 | 6         |
| 63 | miRNA Regulation of Chondrogenesis. Current Molecular Biology Reports, 2018, 4, 208-217.                                                                                                             | 1.6 | 2         |
| 64 | miRNAs in Bone Formation and Homeostasis. , 2015, , 349-380.                                                                                                                                         |     | 1         |
| 65 | Multiple variant mRNAs with different length tandem repeats of (CAYYCC)n produced from bovine selenoprotein P-like protein gene. Environmental Health and Preventive Medicine, 2005, 10, 103-110.    | 3.4 | 0         |
| 66 | Chondrocytes and cartilage biology: Meeting report from the 33rd annual meeting of the American Society for Bone and Mineral Research. IBMS BoneKEy, 2011, 8, 473-478.                               | 0.0 | 0         |
| 67 | Multiple Variant mRNAs with Different Length Tandem Repeats of (CAYYCC)n Produced from Bovine<br>Selenoprotein P-like Protein Gene. Environmental Health and Preventive Medicine, 2005, 10, 103-110. | 3.4 | 0         |