Christopher J Spencer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9223114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-δ180 A-type granites in SW China: Evidence for the interaction between the subducted Paleotethyan slab and the Emeishan mantle plume. Bulletin of the Geological Society of America, 2022, 134, 81-93.	3.3	15
2	Pure sediment-derived granites in a subduction zone. Bulletin of the Geological Society of America, 2022, 134, 599-615.	3.3	14
3	Disparities in oxygen isotopes of detrital and igneous zircon identify erosional bias in crustal rock record. Earth and Planetary Science Letters, 2022, 577, 117248.	4.4	20
4	Zircons underestimate mantle depletion of early Earth. Geochimica Et Cosmochimica Acta, 2022, 317, 538-551.	3.9	10
5	Global-scale emergence of continental crust during the Mesoarchean–early Neoarchean. Geology, 2022, 50, 184-188.	4.4	16
6	Huge sedimentary hiatus in the southern margin of the North China Craton from mid-Mesoproterozoic to Neoproterozoic. International Geology Review, 2022, 64, 2803-2821.	2.1	5
7	Mesoproterozoic magmatism redefines the tectonics and paleogeography of the SW Yangtze Block, China. Precambrian Research, 2022, 370, 106558.	2.7	2
8	Granular titanite from the Roter Kamm crater in Namibia: Product of regional metamorphism, not meteorite impact. Geoscience Frontiers, 2022, 13, 101350.	8.4	3
9	Feedback between surface and deep processes: Insight from time series analysis of sedimentary record. Earth and Planetary Science Letters, 2022, 579, 117352.	4.4	7
10	Formation of the Qiyugou porphyry gold system in East Qinling, China: insights from timing and source characteristics of Late Mesozoic magmatism. Journal of the Geological Society, 2022, 179, .	2.1	2
11	Spatial declustering of zircon data indicate rapid Archean crustal growth and Neoproterozoic plate tectonic equilibrium. Lithos, 2022, 418-419, 106687.	1.4	1
12	Implications of the dominant LP–HT deformation in the Guanhães Block for the AraçuaÃ-West-Congo Orogen evolution. Gondwana Research, 2022, 107, 154-175.	6.0	3
13	Secular changes in metamorphism and metamorphic cooling rates track the evolving plate-tectonic regime on Earth. Journal of the Geological Society, 2022, 179, .	2.1	8
14	Large igneous provinces track fluctuations in subaerial exposure of continents across the <scp>Archean–Proterozoic</scp> transition. Terra Nova, 2022, 34, 323-329.	2.1	11
15	Identification of High δ ¹⁸ O Adakite‣ike Granites in SE Tibet: Implication for Diapiric Relamination of Subducted Sediments. Geophysical Research Letters, 2022, 49, .	4.0	3
16	Using detrital zircon and rutile to constrain sedimentary provenance of Early Paleozoic fluvial systems of the Araripe Basin, Western Gondwana. Journal of South American Earth Sciences, 2022, 116, 103821.	1.4	3
17	A reappraisal of the global tectono-magmatic lull atÂâ^¼Â2.3ÂGa. Precambrian Research, 2022, 376, 106690.	2.7	17
18	Secular compositional changes in hydrated mantle: The record of arc-type basalts. Chemical Geology, 2022, 607, 121010.	3.3	1

#	Article	IF	CITATIONS
19	Pannotia: in defence of its existence and geodynamic significance. Geological Society Special Publication, 2021, 503, 13-39.	1.3	34
20	The role of megacontinents in the supercontinent cycle. Geology, 2021, 49, 402-406.	4.4	64
21	A tectonic model for the Transcontinental Arch: Progressive migration of a Laurentian drainage divide during the Neoproterozoic–Cambrian Sauk Transgression. Terra Nova, 2021, 33, 430-440.	2.1	8
22	The supercontinent cycle. Nature Reviews Earth & Environment, 2021, 2, 358-374.	29.7	102
23	Emergence of continents above seaâ€level influences sediment melt composition. Terra Nova, 2021, 33, 465-474.	2.1	5
24	Evidence for crustal removal, tectonic erosion and flare-ups from the Japanese evolving forearc sediment provenance. Earth and Planetary Science Letters, 2021, 564, 116893.	4.4	28
25	Effect of water on δ180 in zircon. Chemical Geology, 2021, 574, 120243.	3.3	15
26	Coupling sulfur and oxygen isotope ratios in sediment melts across the Archean-Proterozoic transition. Geochimica Et Cosmochimica Acta, 2021, 307, 242-257.	3.9	12
27	Enigmatic Midâ€Proterozoic Orogens: Hot, Thin, and Low. Geophysical Research Letters, 2021, 48, e2021GL093312.	4.0	35
28	Analyses from a validated global U Pb detrital zircon database: Enhanced methods for filtering discordant U Pb zircon analyses and optimizing crystallization age estimates. Earth-Science Reviews, 2021, 220, 103745.	9.1	37
29	Multi-dimensional scaling of detrital zircon geochronology constrains basin evolution of the late Mesoproterozoic ParanoA _i Group, central Brazil. Precambrian Research, 2021, 365, 106381.	2.7	4
30	Siderian mafic-intermediate magmatism in the SW Yangtze Block, South China: Implications for global †tectono-magmatic lull' during the early Paleoproterozoic. Lithos, 2021, 398-399, 106306.	1.4	4
31	Tracing magma water evolution by H2O-in-zircon: A case study in the Gangdese batholith in Tibet. Lithos, 2021, 404-405, 106445.	1.4	5
32	Molybdenum isotopes unmask slab dehydration and melting beneath the Mariana arc. Nature Communications, 2021, 12, 6015.	12.8	23
33	Significant Increase of Continental Freeboard During the Early Paleoproterozoic: Insights From Metasedimentâ€Derived Granites. Geophysical Research Letters, 2021, 48, e2021GL096049.	4.0	16
34	Strategies towards robust interpretations of in situ zircon Lu–Hf isotope analyses. Geoscience Frontiers, 2020, 11, 843-853.	8.4	97
35	Evolution of the melt source during protracted crustal anatexis: An example from the Bhutan Himalaya. Geology, 2020, 48, 87-91.	4.4	37
36	Laurentian origin of the Cuyania suspect terrane, western Argentina, confirmed by Hf isotopes in zircon. Bulletin of the Geological Society of America, 2020, 132, 273-290.	3.3	34

CHRISTOPHER J SPENCER

#	Article	IF	CITATIONS
37	The core of Rodinia formed by the juxtaposition of opposed retreating and advancing accretionary orogens. Earth-Science Reviews, 2020, 211, 103413.	9.1	38
38	Weak orogenic lithosphere guides the pattern of plume-triggered supercontinent break-up. Communications Earth & Environment, 2020, 1, .	6.8	23
39	The 1.8ÂGa Gladkop Suite: The youngest Palaeoproterozoic domain in the Namaqua-Natal Metamorphic Province, South Africa. Precambrian Research, 2020, 350, 105941.	2.7	9
40	The role and significance of juvenile sediments in the formation of A-type granites, West Junggar oceanic arc (NW China): Zircon Hf-O isotopic perspectives. Bulletin of the Geological Society of America, 2020, , .	3.3	6
41	Continuous continental growth as constrained by the sedimentary record. Numerische Mathematik, 2020, 320, 373-401.	1.4	21
42	Geochemistry, zircon U-Pb geochronology and Hf-O isotopes of the Late Mesozoic granitoids from the Xiong'ershan area, East Qinling Orogen, China: Implications for petrogenesis and molybdenum metallogeny. Ore Geology Reviews, 2020, 124, 103653.	2.7	20
43	Detrital zircon <scp>U–Pb–Hf</scp> data from Cambrian sandstones of the Ougarta Mountains Algeria: Implication for palaeoenvironment. Geological Journal, 2020, 55, 7760-7774.	1.3	11
44	Distinct formation history for deep-mantle domains reflected in geochemical differences. Nature Geoscience, 2020, 13, 511-515.	12.9	42
45	Supercontinents: myths, mysteries, and milestones. Geological Society Special Publication, 2019, 470, 39-64.	1.3	34
46	Evaluating How Landform Design and Soil Covers Influence Groundwater Recharge in a Reclaimed Watershed. Water Resources Research, 2019, 55, 6464-6481.	4.2	11
47	A novel model for silicon recycling in the lithosphere: Evidence from the Central Asian Orogenic Belt. Gondwana Research, 2019, 76, 115-122.	6.0	2
48	Harmonic hierarchy of mantle and lithospheric convective cycles: Time series analysis of hafnium isotopes of zircon. Gondwana Research, 2019, 75, 239-248.	6.0	29
49	Multistage processes linked to tectonic transition in the genesis of orogenic gold deposit: A case study from the Shanggong lode deposit, East Qinling, China. Ore Geology Reviews, 2019, 111, 102998.	2.7	33
50	Rapid Exhumation of Earth's Youngest Exposed Granites Driven by Subduction of an Oceanic Arc. Geophysical Research Letters, 2019, 46, 1259-1267.	4.0	17
51	Strongly Peraluminous Granites across the Archean–Proterozoic Transition. Journal of Petrology, 2019, 60, 1299-1348.	2.8	40
52	Paleoproterozoic increase in zircon δ180 driven by rapid emergence of continental crust. Geochimica Et Cosmochimica Acta, 2019, 257, 16-25.	3.9	41
53	"Miles wide and miles deep―– Exploring the depth and breadth of geoscience during the first ten years of Geoscience Frontiers. Geoscience Frontiers, 2019, 10, 1219-1221.	8.4	0
54	Genesis of the Bianjiadayuan Pb–Zn polymetallic deposit, Inner Mongolia, China: Constraints from in-situ sulfur isotope and trace element geochemistry of pyrite. Geoscience Frontiers, 2019, 10, 1863-1877.	8.4	28

CHRISTOPHER J SPENCER

#	Article	IF	CITATIONS
55	Evidence for Whole Mantle Convection Driving Cordilleran Tectonics. Geophysical Research Letters, 2019, 46, 4239-4248.	4.0	24
56	Crustal reworking and orogenic styles inferred from zircon Hf isotopes: Proterozoic examples from the North Atlantic region. Geoscience Frontiers, 2019, 10, 417-424.	8.4	33
57	Evolution of the Mozambique Belt in Malawi constrained by granitoid U-Pb, Sm-Nd and Lu-Hf isotopic data. Gondwana Research, 2019, 68, 93-107.	6.0	19
58	1.99â€ [~] Ga mafic magmatism in the Rona terrane of the Lewisian Gneiss Complex in Scotland. Precambrian Research, 2019, 329, 224-231.	2.7	5
59	In situ trace element and sulfur isotope of pyrite constrain ore genesis in the Shapoling molybdenum deposit, East Qinling Orogen, China. Ore Geology Reviews, 2019, 105, 123-136.	2.7	42
60	Decoding Earth's rhythms: Modulation of supercontinent cycles by longer superocean episodes. Precambrian Research, 2019, 323, 1-5.	2.7	115
61	Deconvolving the pre-Himalayan Indian margin – Tales of crustal growth and destruction. Geoscience Frontiers, 2019, 10, 863-872.	8.4	41
62	A Palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle. Nature Geoscience, 2018, 11, 97-101.	12.9	98
63	Indian-derived sediments deposited in Australia during Gondwana assembly. Precambrian Research, 2018, 312, 23-37.	2.7	20
64	Implications of erosion and bedrock composition on zircon fertility: Examples from South America and Western Australia. Terra Nova, 2018, 30, 289-295.	2.1	38
65	The crustal architecture of Myanmar imaged through zircon U-Pb, Lu-Hf and O isotopes: Tectonic and metallogenic implications. Gondwana Research, 2018, 62, 27-60.	6.0	76
66	Rodinian devil in disguise: Correlation of 1.25–1.10 Ga strata between Tasmania and Grand Canyon. Geology, 2018, 46, 991-994.	4.4	30
67	Laurentian crust in northeast Australia: Implications for the assembly of the supercontinent Nuna. Geology, 2018, 46, 251-254.	4.4	72
68	High-temperature S-type granitoids (charnockites) in the Jining complex, North China Craton: Restite entrainment and hybridization with mafic magma. Lithos, 2018, 320-321, 435-453.	1.4	36
69	An impact melt origin for Earth's oldest known evolved rocks. Nature Geoscience, 2018, 11, 795-799.	12.9	45
70	Petrogenesis and Assembly of the Don Manuel Igneous Complex, Miocene–Pliocene Porphyry Copper Belt, Central Chile. Journal of Petrology, 2018, 59, 1067-1108.	2.8	9
71	The identification and significance of pure sediment-derived granites. Earth and Planetary Science Letters, 2017, 467, 57-63.	4.4	153
72	Magmatic tempo of Earth's youngest exposed plutons as revealed by detrital zircon U-Pb geochronology. Scientific Reports, 2017, 7, 12457.	3.3	20

5

CHRISTOPHER J SPENCER

#	Article	IF	CITATIONS
73	Evidence for melting mud in Earth's mantle from extreme oxygen isotope signatures in zircon. Geology, 2017, 45, 975-978.	4.4	81
74	Growth, destruction, and preservation of Earth's continental crust. Earth-Science Reviews, 2017, 172, 87-106.	9.1	138
75	Visualising data distributions with kernel density estimation and reduced chi-squared statistic. Geoscience Frontiers, 2017, 8, 1247-1252.	8.4	70
76	Geochronology of the central Tanzania Craton and its southern and eastern orogenic margins. Precambrian Research, 2016, 277, 47-67.	2.7	60
77	The Sperrgebiet Domain, Aurus Mountains, SW Namibia: A â^1⁄42020–850Ma window within the Pan-African Gariep Orogen. Precambrian Research, 2016, 286, 35-58.	2.7	43
78	Grain size matters: Implications for element and isotopic mobility in titanite. Precambrian Research, 2016, 278, 283-302.	2.7	51
79	Provenance of Permian–Triassic Gondwana Sequence units accreted to the Banda Arc in the Timor region: Constraints from zircon U–Pb and Hf isotopes. Gondwana Research, 2016, 38, 28-39.	6.0	17
80	Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology. Geoscience Frontiers, 2016, 7, 581-589.	8.4	503
81	Visualizing the sedimentary response through the orogenic cycle: A multidimensional scaling approach. Lithosphere, 2016, 8, 29-37.	1.4	54
82	The closure of Palaeo-Tethys in Eastern Myanmar and Northern Thailand: New insights from zircon U–Pb and Hf isotope data. Gondwana Research, 2016, 39, 401-422.	6.0	96
83	Crustal growth during island arc accretion and transcurrent deformation, Natal Metamorphic Province, South Africa: New isotopic constraints. Precambrian Research, 2015, 265, 203-217.	2.7	37
84	Generation and preservation of continental crust in the Grenville Orogeny. Geoscience Frontiers, 2015, 6, 357-372.	8.4	117
85	The zircon archive of continent formation through time. Geological Society Special Publication, 2015, 389, 197-225.	1.3	161
86	Proterozoic onset of crustal reworking and collisional tectonics: Reappraisal of the zircon oxygen isotope record. Geology, 2014, 42, 451-454.	4.4	110
87	Intermontane basins and bimodal volcanism at the onset of the Sveconorwegian Orogeny, southern Norway. Precambrian Research, 2014, 252, 107-118.	2.7	42
88	Detrital zircon geochronology of the Grenville/Llano foreland and basal Sauk Sequence in west Texas, USA. Bulletin of the Geological Society of America, 2014, 126, 1117-1128.	3.3	61
89	Revisiting the importance of residual source material (restite) in granite petrogenesis: The Cardigan Pluton, New Hampshire. Lithos, 2014, 202-203, 237-249.	1.4	23
90	Not all supercontinents are created equal: Gondwana-Rodinia case study. Geology, 2013, 41, 795-798.	4.4	81

#	Article	IF	CITATIONS
91	Constraining the timing and provenance of the Neoproterozoic Little Willow and Big Cottonwood Formations, Utah: Expanding the sedimentary record for early rifting of Rodinia. Precambrian Research, 2012, 204-205, 57-65.	2.7	23
92	The metamorphism and exhumation of the Himalayan metamorphic core, eastern Garhwal region, India. Tectonics, 2012, 31, .	2.8	56
93	Depositional provenance of the Himalayan metamorphic core of Garhwal region, India: Constrained by U–Pb and Hf isotopes in zircons. Gondwana Research, 2012, 22, 26-35.	6.0	77
94	Depositional provenance of the Greater Himalayan Sequence, Garhwal Himalaya, India: Implications for tectonic setting. Journal of Asian Earth Sciences, 2011, 41, 344-354.	2.3	12
95	Stratigraphic context, geochemical, and isotopic properties of magmatism in the Siluro-Devonian inliers of northern Maine: Implications for the Acadian Orogeny. Numerische Mathematik, 2011, 311, 528-572.	1.4	9
96	Linear dunes on Titan and earth: Initial remote sensing comparisons. Geomorphology, 2010, 121, 122-132.	2.6	97
97	Dunes on Titan observed by Cassini Radar. Icarus, 2008, 194, 690-703.	2.5	193
98	A Geophysical Investigation of Shallow Deformation Along an Anomalous Section of the Wasatch Fault Zone, Utah, USA. Environmental and Engineering Geoscience, 2008, 14, 183-197.	0.9	5
99	Metasediment-derived melts in subduction zone magmas and their influence on crustal evolution. Journal of Petrology, 0, , .	2.8	5
100	Zircon geochronology and Hf isotopic study from the Leo Pargil Dome, India: implications for the palaeogeographic reconstruction and tectonic evolution of a Himalayan gneiss dome. Geological Magazine, 0, , 1-18.	1.5	0