Christopher J Spencer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9223114/publications.pdf

Version: 2024-02-01

100 papers

4,209 citations

36 h-index 62 g-index

105 all docs

105 docs citations

105 times ranked 2961 citing authors

#	Article	IF	CITATIONS
1	Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology. Geoscience Frontiers, 2016, 7, 581-589.	8.4	503
2	Dunes on Titan observed by Cassini Radar. Icarus, 2008, 194, 690-703.	2.5	193
3	The zircon archive of continent formation through time. Geological Society Special Publication, 2015, 389, 197-225.	1.3	161
4	The identification and significance of pure sediment-derived granites. Earth and Planetary Science Letters, 2017, 467, 57-63.	4.4	153
5	Growth, destruction, and preservation of Earth's continental crust. Earth-Science Reviews, 2017, 172, 87-106.	9.1	138
6	Generation and preservation of continental crust in the Grenville Orogeny. Geoscience Frontiers, 2015, 6, 357-372.	8.4	117
7	Decoding Earth's rhythms: Modulation of supercontinent cycles by longer superocean episodes. Precambrian Research, 2019, 323, 1-5.	2.7	115
8	Proterozoic onset of crustal reworking and collisional tectonics: Reappraisal of the zircon oxygen isotope record. Geology, 2014, 42, 451-454.	4.4	110
9	The supercontinent cycle. Nature Reviews Earth & Environment, 2021, 2, 358-374.	29.7	102
10	A Palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle. Nature Geoscience, $2018,11,97-101.$	12.9	98
11	Linear dunes on Titan and earth: Initial remote sensing comparisons. Geomorphology, 2010, 121, 122-132.	2.6	97
12	Strategies towards robust interpretations of in situ zircon Lu–Hf isotope analyses. Geoscience Frontiers, 2020, 11, 843-853.	8.4	97
13	The closure of Palaeo-Tethys in Eastern Myanmar and Northern Thailand: New insights from zircon U–Pb and Hf isotope data. Gondwana Research, 2016, 39, 401-422.	6.0	96
14	Not all supercontinents are created equal: Gondwana-Rodinia case study. Geology, 2013, 41, 795-798.	4.4	81
15	Evidence for melting mud in Earth's mantle from extreme oxygen isotope signatures in zircon. Geology, 2017, 45, 975-978.	4.4	81
16	Depositional provenance of the Himalayan metamorphic core of Garhwal region, India: Constrained by U–Pb and Hf isotopes in zircons. Gondwana Research, 2012, 22, 26-35.	6.0	77
17	The crustal architecture of Myanmar imaged through zircon U-Pb, Lu-Hf and O isotopes: Tectonic and metallogenic implications. Gondwana Research, 2018, 62, 27-60.	6.0	76
18	Laurentian crust in northeast Australia: Implications for the assembly of the supercontinent Nuna. Geology, 2018, 46, 251-254.	4.4	72

#	Article	IF	Citations
19	Visualising data distributions with kernel density estimation and reduced chi-squared statistic. Geoscience Frontiers, 2017, 8, 1247-1252.	8.4	70
20	The role of megacontinents in the supercontinent cycle. Geology, 2021, 49, 402-406.	4.4	64
21	Detrital zircon geochronology of the Grenville/Llano foreland and basal Sauk Sequence in west Texas, USA. Bulletin of the Geological Society of America, 2014, 126, 1117-1128.	3.3	61
22	Geochronology of the central Tanzania Craton and its southern and eastern orogenic margins. Precambrian Research, 2016, 277, 47-67.	2.7	60
23	The metamorphism and exhumation of the Himalayan metamorphic core, eastern Garhwal region, India. Tectonics, 2012, 31, .	2.8	56
24	Visualizing the sedimentary response through the orogenic cycle: A multidimensional scaling approach. Lithosphere, 2016, 8, 29-37.	1.4	54
25	Grain size matters: Implications for element and isotopic mobility in titanite. Precambrian Research, 2016, 278, 283-302.	2.7	51
26	An impact melt origin for Earth's oldest known evolved rocks. Nature Geoscience, 2018, 11, 795-799.	12.9	45
27	The Sperrgebiet Domain, Aurus Mountains, SW Namibia: A â^1⁄42020–850Ma window within the Pan-African Gariep Orogen. Precambrian Research, 2016, 286, 35-58.	2.7	43
28	Intermontane basins and bimodal volcanism at the onset of the Sveconorwegian Orogeny, southern Norway. Precambrian Research, 2014, 252, 107-118.	2.7	42
29	In situ trace element and sulfur isotope of pyrite constrain ore genesis in the Shapoling molybdenum deposit, East Qinling Orogen, China. Ore Geology Reviews, 2019, 105, 123-136.	2.7	42
30	Distinct formation history for deep-mantle domains reflected in geochemical differences. Nature Geoscience, 2020, 13, 511-515.	12.9	42
31	Paleoproterozoic increase in zircon δ180 driven by rapid emergence of continental crust. Geochimica Et Cosmochimica Acta, 2019, 257, 16-25.	3.9	41
32	Deconvolving the pre-Himalayan Indian margin – Tales of crustal growth and destruction. Geoscience Frontiers, 2019, 10, 863-872.	8.4	41
33	Strongly Peraluminous Granites across the Archean–Proterozoic Transition. Journal of Petrology, 2019, 60, 1299-1348.	2.8	40
34	Implications of erosion and bedrock composition on zircon fertility: Examples from South America and Western Australia. Terra Nova, 2018, 30, 289-295.	2.1	38
35	The core of Rodinia formed by the juxtaposition of opposed retreating and advancing accretionary orogens. Earth-Science Reviews, 2020, 211, 103413.	9.1	38
36	Crustal growth during island arc accretion and transcurrent deformation, Natal Metamorphic Province, South Africa: New isotopic constraints. Precambrian Research, 2015, 265, 203-217.	2.7	37

#	Article	IF	CITATIONS
37	Evolution of the melt source during protracted crustal anatexis: An example from the Bhutan Himalaya. Geology, 2020, 48, 87-91.	4.4	37
38	Analyses from a validated global U Pb detrital zircon database: Enhanced methods for filtering discordant U Pb zircon analyses and optimizing crystallization age estimates. Earth-Science Reviews, 2021, 220, 103745.	9.1	37
39	High-temperature S-type granitoids (charnockites) in the Jining complex, North China Craton: Restite entrainment and hybridization with mafic magma. Lithos, 2018, 320-321, 435-453.	1.4	36
40	Enigmatic Midâ€Proterozoic Orogens: Hot, Thin, and Low. Geophysical Research Letters, 2021, 48, e2021GL093312.	4.0	35
41	Supercontinents: myths, mysteries, and milestones. Geological Society Special Publication, 2019, 470, 39-64.	1.3	34
42	Laurentian origin of the Cuyania suspect terrane, western Argentina, confirmed by Hf isotopes in zircon. Bulletin of the Geological Society of America, 2020, 132, 273-290.	3.3	34
43	Pannotia: in defence of its existence and geodynamic significance. Geological Society Special Publication, 2021, 503, 13-39.	1.3	34
44	Multistage processes linked to tectonic transition in the genesis of orogenic gold deposit: A case study from the Shanggong lode deposit, East Qinling, China. Ore Geology Reviews, 2019, 111, 102998.	2.7	33
45	Crustal reworking and orogenic styles inferred from zircon Hf isotopes: Proterozoic examples from the North Atlantic region. Geoscience Frontiers, 2019, 10, 417-424.	8.4	33
46	Rodinian devil in disguise: Correlation of 1.25–1.10 Ga strata between Tasmania and Grand Canyon. Geology, 2018, 46, 991-994.	4.4	30
47	Harmonic hierarchy of mantle and lithospheric convective cycles: Time series analysis of hafnium isotopes of zircon. Gondwana Research, 2019, 75, 239-248.	6.0	29
48	Genesis of the Bianjiadayuan Pb–Zn polymetallic deposit, Inner Mongolia, China: Constraints from in-situ sulfur isotope and trace element geochemistry of pyrite. Geoscience Frontiers, 2019, 10, 1863-1877.	8.4	28
49	Evidence for crustal removal, tectonic erosion and flare-ups from the Japanese evolving forearc sediment provenance. Earth and Planetary Science Letters, 2021, 564, 116893.	4.4	28
50	Evidence for Whole Mantle Convection Driving Cordilleran Tectonics. Geophysical Research Letters, 2019, 46, 4239-4248.	4.0	24
51	Constraining the timing and provenance of the Neoproterozoic Little Willow and Big Cottonwood Formations, Utah: Expanding the sedimentary record for early rifting of Rodinia. Precambrian Research, 2012, 204-205, 57-65.	2.7	23
52	Revisiting the importance of residual source material (restite) in granite petrogenesis: The Cardigan Pluton, New Hampshire. Lithos, 2014, 202-203, 237-249.	1.4	23
53	Weak orogenic lithosphere guides the pattern of plume-triggered supercontinent break-up. Communications Earth & Environment, 2020, $1,\ldots$	6.8	23
54	Molybdenum isotopes unmask slab dehydration and melting beneath the Mariana arc. Nature Communications, 2021, 12, 6015.	12.8	23

#	Article	IF	CITATIONS
55	Continuous continental growth as constrained by the sedimentary record. Numerische Mathematik, 2020, 320, 373-401.	1.4	21
56	Magmatic tempo of Earth's youngest exposed plutons as revealed by detrital zircon U-Pb geochronology. Scientific Reports, 2017, 7, 12457.	3.3	20
57	Indian-derived sediments deposited in Australia during Gondwana assembly. Precambrian Research, 2018, 312, 23-37.	2.7	20
58	Geochemistry, zircon U-Pb geochronology and Hf-O isotopes of the Late Mesozoic granitoids from the Xiong'ershan area, East Qinling Orogen, China: Implications for petrogenesis and molybdenum metallogeny. Ore Geology Reviews, 2020, 124, 103653.	2.7	20
59	Disparities in oxygen isotopes of detrital and igneous zircon identify erosional bias in crustal rock record. Earth and Planetary Science Letters, 2022, 577, 117248.	4.4	20
60	Evolution of the Mozambique Belt in Malawi constrained by granitoid U-Pb, Sm-Nd and Lu-Hf isotopic data. Gondwana Research, 2019, 68, 93-107.	6.0	19
61	Provenance of Permian–Triassic Gondwana Sequence units accreted to the Banda Arc in the Timor region: Constraints from zircon U–Pb and Hf isotopes. Gondwana Research, 2016, 38, 28-39.	6.0	17
62	Rapid Exhumation of Earth's Youngest Exposed Granites Driven by Subduction of an Oceanic Arc. Geophysical Research Letters, 2019, 46, 1259-1267.	4.0	17
63	A reappraisal of the global tectono-magmatic lull atÂâ^1/4Â2.3ÂGa. Precambrian Research, 2022, 376, 106690.	2.7	17
64	Significant Increase of Continental Freeboard During the Early Paleoproterozoic: Insights From Metasedimentâ€Derived Granites. Geophysical Research Letters, 2021, 48, e2021GL096049.	4.0	16
65	Global-scale emergence of continental crust during the Mesoarchean–early Neoarchean. Geology, 2022, 50, 184-188.	4.4	16
66	Low-Î 180 A-type granites in SW China: Evidence for the interaction between the subducted Paleotethyan slab and the Emeishan mantle plume. Bulletin of the Geological Society of America, 2022, 134, 81-93.	3.3	15
67	Effect of water on δ180 in zircon. Chemical Geology, 2021, 574, 120243.	3.3	15
68	Pure sediment-derived granites in a subduction zone. Bulletin of the Geological Society of America, 2022, 134, 599-615.	3.3	14
69	Depositional provenance of the Greater Himalayan Sequence, Garhwal Himalaya, India: Implications for tectonic setting. Journal of Asian Earth Sciences, 2011, 41, 344-354.	2.3	12
70	Coupling sulfur and oxygen isotope ratios in sediment melts across the Archean-Proterozoic transition. Geochimica Et Cosmochimica Acta, 2021, 307, 242-257.	3.9	12
71	Evaluating How Landform Design and Soil Covers Influence Groundwater Recharge in a Reclaimed Watershed. Water Resources Research, 2019, 55, 6464-6481.	4.2	11
72	Detrital zircon <scp>U–Pb–Hf</scp> data from Cambrian sandstones of the Ougarta Mountains Algeria: Implication for palaeoenvironment. Geological Journal, 2020, 55, 7760-7774.	1.3	11

#	Article	IF	CITATIONS
73	Large igneous provinces track fluctuations in subaerial exposure of continents across the <scp>Archeanâ€"Proterozoic</scp> transition. Terra Nova, 2022, 34, 323-329.	2.1	11
74	Zircons underestimate mantle depletion of early Earth. Geochimica Et Cosmochimica Acta, 2022, 317, 538-551.	3.9	10
75	Stratigraphic context, geochemical, and isotopic properties of magmatism in the Siluro-Devonian inliers of northern Maine: Implications for the Acadian Orogeny. Numerische Mathematik, 2011, 311, 528-572.	1.4	9
76	Petrogenesis and Assembly of the Don Manuel Igneous Complex, Miocene–Pliocene Porphyry Copper Belt, Central Chile. Journal of Petrology, 2018, 59, 1067-1108.	2.8	9
77	The 1.8ÂGa Gladkop Suite: The youngest Palaeoproterozoic domain in the Namaqua-Natal Metamorphic Province, South Africa. Precambrian Research, 2020, 350, 105941.	2.7	9
78	A tectonic model for the Transcontinental Arch: Progressive migration of a Laurentian drainage divide during the Neoproterozoic–Cambrian Sauk Transgression. Terra Nova, 2021, 33, 430-440.	2.1	8
79	Secular changes in metamorphism and metamorphic cooling rates track the evolving plate-tectonic regime on Earth. Journal of the Geological Society, 2022, 179, .	2.1	8
80	Feedback between surface and deep processes: Insight from time series analysis of sedimentary record. Earth and Planetary Science Letters, 2022, 579, 117352.	4.4	7
81	The role and significance of juvenile sediments in the formation of A-type granites, West Junggar oceanic arc (NW China): Zircon Hf-O isotopic perspectives. Bulletin of the Geological Society of America, 2020, , .	3.3	6
82	A Geophysical Investigation of Shallow Deformation Along an Anomalous Section of the Wasatch Fault Zone, Utah, USA. Environmental and Engineering Geoscience, 2008, 14, 183-197.	0.9	5
83	1.99†Ga mafic magmatism in the Rona terrane of the Lewisian Gneiss Complex in Scotland. Precambrian Research, 2019, 329, 224-231.	2.7	5
84	Emergence of continents above seaâ€level influences sediment melt composition. Terra Nova, 2021, 33, 465-474.	2.1	5
85	Tracing magma water evolution by H2O-in-zircon: A case study in the Gangdese batholith in Tibet. Lithos, 2021, 404-405, 106445.	1.4	5
86	Metasediment-derived melts in subduction zone magmas and their influence on crustal evolution. Journal of Petrology, 0, , .	2.8	5
87	Huge sedimentary hiatus in the southern margin of the North China Craton from mid-Mesoproterozoic to Neoproterozoic. International Geology Review, 2022, 64, 2803-2821.	2.1	5
88	Multi-dimensional scaling of detrital zircon geochronology constrains basin evolution of the late Mesoproterozoic ParanoA; Group, central Brazil. Precambrian Research, 2021, 365, 106381.	2.7	4
89	Siderian mafic-intermediate magmatism in the SW Yangtze Block, South China: Implications for global †tectono-magmatic lull†during the early Paleoproterozoic. Lithos, 2021, 398-399, 106306.	1.4	4
90	Granular titanite from the Roter Kamm crater in Namibia: Product of regional metamorphism, not meteorite impact. Geoscience Frontiers, 2022, 13, 101350.	8.4	3

#	Article	IF	CITATIONS
91	Implications of the dominant LP–HT deformation in the Guanhães Block for the AraçuaÃ-West-Congo Orogen evolution. Gondwana Research, 2022, 107, 154-175.	6.0	3
92	Identification of High δ ¹⁸ O Adakite‣ike Granites in SE Tibet: Implication for Diapiric Relamination of Subducted Sediments. Geophysical Research Letters, 2022, 49, .	4.0	3
93	Using detrital zircon and rutile to constrain sedimentary provenance of Early Paleozoic fluvial systems of the Araripe Basin, Western Gondwana. Journal of South American Earth Sciences, 2022, 116, 103821.	1.4	3
94	A novel model for silicon recycling in the lithosphere: Evidence from the Central Asian Orogenic Belt. Gondwana Research, 2019, 76, 115-122.	6.0	2
95	Mesoproterozoic magmatism redefines the tectonics and paleogeography of the SW Yangtze Block, China. Precambrian Research, 2022, 370, 106558.	2.7	2
96	Formation of the Qiyugou porphyry gold system in East Qinling, China: insights from timing and source characteristics of Late Mesozoic magmatism. Journal of the Geological Society, 2022, 179, .	2.1	2
97	Spatial declustering of zircon data indicate rapid Archean crustal growth and Neoproterozoic plate tectonic equilibrium. Lithos, 2022, 418-419, 106687.	1.4	1
98	Secular compositional changes in hydrated mantle: The record of arc-type basalts. Chemical Geology, 2022, 607, 121010.	3.3	1
99	"Miles wide and miles deep―– Exploring the depth and breadth of geoscience during the first ten years of Geoscience Frontiers. Geoscience Frontiers, 2019, 10, 1219-1221.	8.4	0
100	Zircon geochronology and Hf isotopic study from the Leo Pargil Dome, India: implications for the palaeogeographic reconstruction and tectonic evolution of a Himalayan gneiss dome. Geological Magazine, 0, , 1-18.	1.5	0