
David Lam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9222939/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Charge arrier Mobility Requirements for Bulk Heterojunction Solar Cells with High Fill Factor and External Quantum Efficiency >90%. Advanced Energy Materials, 2015, 5, 1500577.	19.5	214
2	Humidity Sensing through Reversible Isomerization of a Covalent Organic Framework. Journal of the American Chemical Society, 2020, 142, 783-791.	13.7	190
3	Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solid‣tate Dye‣ensitized Solar Cells. Advanced Energy Materials, 2013, 3, 1657-1663.	19.5	99
4	Solutionâ€Based Processing of Optoelectronically Active Indium Selenide. Advanced Materials, 2018, 30, e1802990.	21.0	78
5	Expression of interfacial Seebeck coefficient through grain boundary engineering with multi-layer graphene nanoplatelets. Energy and Environmental Science, 2020, 13, 4114-4121.	30.8	78
6	Layer-by-Layer Sorting of Rhenium Disulfide via High-Density Isopycnic Density Gradient Ultracentrifugation. Nano Letters, 2016, 16, 7216-7223.	9.1	54
7	Anhydrous Liquid-Phase Exfoliation of Pristine Electrochemically Active GeS Nanosheets. Chemistry of Materials, 2018, 30, 2245-2250.	6.7	41
8	In Situ, Atomicâ€Resolution Observation of Lithiation and Sodiation of WS ₂ Nanoflakes: Implications for Lithiumâ€ion and Sodiumâ€ion Batteries. Small, 2021, 17, e2100637.	10.0	22
9	Large-area optoelectronic-grade InSe thin films via controlled phase evolution. Applied Physics Reviews, 2020, 7, .	11.3	17
10	Intrinsic carrier multiplication in layered Bi2O2Se avalanche photodiodes with gain bandwidth product exceeding 1 GHz. Nano Research, 2021, 14, 1961-1966.	10.4	17
11	Visualizing Thermally Activated Memristive Switching in Percolating Networks of Solutionâ€Processed 2D Semiconductors. Advanced Functional Materials, 2021, 31, 2107385.	14.9	17
12	Liquid-Phase Exfoliation of Magnetically and Optoelectronically Active Ruthenium Trichloride Nanosheets. ACS Nano, 2022, 16, 11315-11324.	14.6	10
13	Morphotaxy of Layered van der Waals Materials. ACS Nano, 2022, 16, 7144-7167.	14.6	8
14	Lithium/Sodiumâ€lon Batteries: In Situ, Atomicâ€Resolution Observation of Lithiation and Sodiation of WS ₂ Nanoflakes: Implications for Lithiumâ€lon and Sodiumâ€lon Batteries (Small 24/2021). Small, 2021, 17, 2170120.	10.0	0