Kevin P C Minbiole

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9222928/publications.pdf

Version: 2024-02-01

58 4,075 papers citations

32 57
h-index g-index

63 63 docs citations

63 times ranked 3318 citing authors

#	Article	IF	CITATIONS
1	Quaternary Phosphonium Compounds: An Examination of Non-Nitrogenous Cationic Amphiphiles That Evade Disinfectant Resistance. ACS Infectious Diseases, 2022, 8, 387-397.	3.8	16
2	Lymphocyte Inhibition by the Salamander-Killing Chytrid Fungus, Batrachochytrium salamandrivorans. Infection and Immunity, 2022, 90, iai0002022.	2.2	6
3	An experimental test of disease resistance function in the skin-associated bacterial communities of three tropical amphibian species. FEMS Microbiology Ecology, 2022, 98, .	2.7	2
4	Rigidityâ€Activity Relationships of bisQPC Scaffolds against Pathogenic Bacteria. ChemMedChem, 2022, 17, .	3.2	5
5	Seasonal changes and the unexpected impact of environmental disturbance on skin bacteria of individual amphibians in a natural habitat. FEMS Microbiology Ecology, 2021, 97, .	2.7	10
6	Metallocene QACs: The Incorporation of Ferrocene Moieties into monoQAC and bisQAC Structures. ChemMedChem, 2021, 16, 467-471.	3.2	6
7	Diastereoselective Copper-Mediated Conjugate Addition of Functionalized Magnesiates for the Preparation of Bisaryl Nrf2 Activators. Journal of Organic Chemistry, 2021, 86, 3120-3137.	3.2	O
8	Trivalent sulfonium compounds (TSCs): Tetrahydrothiophene-based amphiphiles exhibit similar antimicrobial activity to analogous ammonium-based amphiphiles. Bioorganic and Medicinal Chemistry Letters, 2021, 37, 127809.	2.2	11
9	Chemotaxonomic investigation of Apocynaceae for retronecine-type pyrrolizidine alkaloids using HPLC-MS/MS. Phytochemistry, 2021, 185, 112662.	2.9	6
10	Analysis of the Destabilization of Bacterial Membranes by Quaternary Ammonium Compounds: A Combined Experimental and Computational Study. ChemBioChem, 2020, 21, 1510-1516.	2.6	41
11	Advancements in the Development of Nonâ€Nitrogenâ€Based Amphiphilic Antiseptics to Overcome Pathogenic Bacterial Resistance. ChemMedChem, 2020, 15, 1974-1984.	3.2	21
12	Are Quaternary Ammonium Compounds, the Workhorse Disinfectants, Effective against Severe Acute Respiratory Syndrome-Coronavirus-2?. ACS Infectious Diseases, 2020, 6, 1553-1557.	3.8	96
13	Further Investigations into Rigidityâ€Activity Relationships in BisQAC Amphiphilic Antiseptics. ChemMedChem, 2020, 15, 667-670.	3.2	17
14	Changes in Microbiome Confer Multigenerational Host Resistance after Sub-toxic Pesticide Exposure. Cell Host and Microbe, 2020, 27, 213-224.e7.	11.0	77
15	More QACs, more questions: Recent advances in structure activity relationships and hurdles in understanding resistance mechanisms. Tetrahedron Letters, 2019, 60, 150935.	1.4	48
16	Metabolites Involved in Immune Evasion by $\langle i \rangle$ Batrachochytrium dendrobatidis $\langle i \rangle$ Include the Polyamine Spermidine. Infection and Immunity, 2019, 87, .	2.2	15
17	An Investigation into Rigidity–Activity Relationships in BisQAC Amphiphilic Antiseptics. ChemMedChem, 2019, 14, 83-87.	3.2	22
18	Prodigiosin, Violacein, and Volatile Organic Compounds Produced by Widespread Cutaneous Bacteria of Amphibians Can Inhibit Two Batrachochytrium Fungal Pathogens. Microbial Ecology, 2018, 75, 1049-1062.	2.8	103

#	Article	IF	CITATIONS
19	<scp>HPLC</scp> â€ <scp>MS</scp> detection of pyrrolizidine alkaloids and their <i>Nâ€</i> oxides in herbarium specimens dating back to the 1850s. Applications in Plant Sciences, 2018, 6, e1143.	2.1	19
20	Variation in Metabolite Profiles of Amphibian Skin Bacterial Communities Across Elevations in the Neotropics. Microbial Ecology, 2017, 74, 227-238.	2.8	34
21	The Development of Nextâ€Generation Pyridiniumâ€Based multiQAC Antiseptics. ChemMedChem, 2017, 12, 280-283.	3.2	32
22	Ester- and amide-containing multiQACs: Exploring multicationic soft antimicrobial agents. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2107-2112.	2.2	31
23	Efflux Pumps Might Not Be the Major Drivers of QAC Resistance in Methicillinâ€Resistant <i>Staphylococcus aureus</i> . ChemBioChem, 2017, 18, 1573-1577.	2.6	33
24	Identification of Bufadienolides from the Boreal Toad, Anaxyrus boreas, Active Against a Fungal Pathogen. Microbial Ecology, 2017, 74, 990-1000.	2.8	30
25	Hybrid BisQACs: Potent Biscationic Quaternary Ammonium Compounds Merging the Structures of Two Commercial Antiseptics. ChemMedChem, 2017, 12, 1931-1934.	3.2	20
26	Using "Omics―and Integrated Multi-Omics Approaches to Guide Probiotic Selection to Mitigate Chytridiomycosis and Other Emerging Infectious Diseases. Frontiers in Microbiology, 2016, 7, 68.	3 . 5	135
27	Building a Better Quaternary Ammonium Compound (QAC): Branched Tetracationic Antiseptic Amphiphiles. ChemMedChem, 2016, 11, 1401-1405.	3.2	45
28	Organic synthesis in the Smith Group: a personal selection of a dozen lessons learned at the University of Pennsylvania. Journal of Antibiotics, 2016, 69, 192-202.	2.0	0
29	Short-Term Exposure to Coal Combustion Waste Has Little Impact on the Skin Microbiome of Adult Spring Peepers (Pseudacris crucifer). Applied and Environmental Microbiology, 2016, 82, 3493-3502.	3.1	21
30	The isolation of tetrangomycin from terrestrial Streptomyces sp. CAH29: evaluation of antioxidant, anticancer, and anti-MRSA activity. Medicinal Chemistry Research, 2016, 25, 2872-2881.	2.4	11
31	Structure–Resistance Relationships: Interrogating Antiseptic Resistance in Bacteria with Multicationic Quaternary Ammonium Dyes. ChemMedChem, 2016, 11, 958-962.	3.2	36
32	The Petasis-Ferrier rearrangement: developments and applications. Journal of Antibiotics, 2016, 69, 213-219.	2.0	15
33	Polymeric Quaternary Ammonium Compounds: Versatile Antimicrobial Materials. Current Topics in Medicinal Chemistry, 2016, 17, 305-318.	2.1	62
34	Scaffoldâ€Hopping of Multicationic Amphiphiles Yields Three New Classes of Antimicrobials. ChemBioChem, 2015, 16, 2299-2303.	2.6	36
35	Panamanian frog species host unique skin bacterial communities. Frontiers in Microbiology, 2015, 6, 1171.	3.5	144
36	Community Structure and Function of Amphibian Skin Microbes: An Experiment with Bullfrogs Exposed to a Chytrid Fungus. PLoS ONE, 2015, 10, e0139848.	2.5	120

#	Article	IF	CITATIONS
37	Quaternary Ammonium Compounds: An Antimicrobial Mainstay and Platform for Innovation to Address Bacterial Resistance. ACS Infectious Diseases, 2015, 1, 288-303.	3.8	441
38	The cutaneous bacterium <i><scp>J</scp>anthinobacterium lividum</i> inhibits the growth of <i><scp>T</scp>richophyton rubrum in vitro</i> International Journal of Dermatology, 2015, 54, 156-159.	1.0	14
39	Bioorganic Investigation of Multicationic Antimicrobials to Combat QAC-Resistant <i>Staphylococcus aureus</i> . ACS Infectious Diseases, 2015, 1, 304-309.	3.8	73
40	Phylogenetic distribution of symbiotic bacteria from Panamanian amphibians that inhibit growth of the lethal fungal pathogen <i>Batrachochytrium dendrobatidis</i> . Molecular Ecology, 2015, 24, 1628-1641.	3.9	118
41	Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142881.	2.6	165
42	Immunomodulatory Metabolites Released by the Frog-Killing Fungus Batrachochytrium dendrobatidis. Infection and Immunity, 2015, 83, 4565-4570.	2.2	39
43	Interactions between amphibians' symbiotic bacteria cause the production of emergent anti-fungal metabolites. Frontiers in Microbiology, 2014, 5, 441.	3.5	123
44	The antimicrobial activity of mono-, bis-, tris-, and tetracationic amphiphiles derived from simple polyamine platforms. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5824-5828.	2.2	41
45	Nonlethal amphibian skin swabbing of cutaneous natural products for HPLC fingerprinting. Analytical Methods, 2014, 6, 3277-3284.	2.7	17
46	Biofilmâ€Eradicating Properties of Quaternary Ammonium Amphiphiles: Simple Mimics of Antimicrobial Peptides. ChemBioChem, 2014, 15, 2211-2215.	2.6	126
47	Beyond paraquats: Dialkyl $3,3\hat{a}\in^{2}$ - and $3,4\hat{a}\in^{2}$ -bipyridinium amphiphiles as antibacterial agents. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3706-3709.	2.2	22
48	TMEDA-derived biscationic amphiphiles: An economical preparation of potent antibacterial agents. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 99-102.	2.2	34
49	Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecology Letters, 2013, 16, 807-820.	6.4	239
50	Synergistic Inhibition of the Lethal Fungal Pathogen Batrachochytrium dendrobatidis: The Combined Effect of Symbiotic Bacterial Metabolites and Antimicrobial Peptides of the Frog Rana muscosa. Journal of Chemical Ecology, 2012, 38, 958-965.	1.8	78
51	The antibacterial activity of 4,4′-bipyridinium amphiphiles with conventional, bicephalic and gemini architectures. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4055-4058.	2.2	49
52	Gut of Red-backed Salamanders (Plethodon cinereus) May Serve as a Reservoir for an Antifungal Cutaneous Bacterium. Journal of Herpetology, 2011, 45, 329-332.	0.5	29
53	Bicephalic amphiphile architecture affects antibacterial activity. European Journal of Medicinal Chemistry, 2011, 46, 4219-4226.	5.5	35
54	Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME Journal, 2009, 3, 818-824.	9.8	478

#	Article	IF	CITATIONS
55	The Bacterially Produced Metabolite Violacein Is Associated with Survival of Amphibians Infected with a Lethal Fungus. Applied and Environmental Microbiology, 2009, 75, 6635-6638.	3.1	173
56	The Identification of 2,4-diacetylphloroglucinol as an Antifungal Metabolite Produced by Cutaneous Bacteria of the Salamander Plethodon cinereus. Journal of Chemical Ecology, 2008, 34, 39-43.	1.8	138
57	Amphibian Chemical Defense: Antifungal Metabolites of the Microsymbiont Janthinobacterium lividum on the Salamander Plethodon cinereus. Journal of Chemical Ecology, 2008, 34, 1422-1429.	1.8	272
58	A Cyclopropane Fragmentation Approach to Heterocycle Assembly:  A Convergent Synthesis of Oxepanes. Organic Letters, 2005, 7, 515-517.	4.6	43