Zong-Huai Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9222505/publications.pdf

Version: 2024-02-01

120 6,420 44 76
papers citations h-index g-index

121 121 121 8636
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Synthesis of Titanium Molybdenum Nitride-Decorated Electrospun Carbon Nanofiber Membranes as Interlayers to Suppress Polysulfide Shuttling in Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 776-788.	6.7	21
2	Ti3C2Tx/aramid film electrode with high capacitance and good mechanical strength and the assembled wide temperature all-solid-state symmetrical supercapacitor. Journal of Power Sources, 2022, 520, 230899.	7.8	12
3	Few-layer Mg-deficient borophene nanosheets: I ₂ oxidation and ultrasonic delamination from MgB ₂ . Nanoscale, 2022, 14, 4195-4203.	5.6	3
4	Filling Ti3C2Tx nanosheets into melamine foam towards a highly compressible all-in-one supercapacitor. Nano Research, 2022, 15, 3254-3263.	10.4	20
5	Vapor-phase polymerization of fibrous PEDOT on carbon fibers film for fast pseudocapacitive energy storage. Applied Surface Science, 2022, 597, 153684.	6.1	20
6	Ti3C2Tx/RGO//PANI/RGO all-solid-state asymmetrical fiber supercapacitor with high energy density and superior flexibility. Journal of Alloys and Compounds, 2021, 861, 157950.	5.5	15
7	3D Hierarchical NiCo ₂ S ₄ Nanoparticles/Carbon Nanotube Sponge Cathode for Highly Compressible Asymmetric Supercapacitors. Energy & Samp; Fuels, 2021, 35, 3449-3458.	5.1	21
8	High-quality borophene quantum dot realization and their application in a photovoltaic device. Journal of Materials Chemistry A, 2021, 9, 24036-24043.	10.3	14
9	Ultrahigh-energy sodium ion capacitors enabled by the enhanced intercalation pseudocapacitance of self-standing Ti2Nb2O9/CNF anodes. Nanoscale, 2021, 13, 15781-15788.	5.6	7
10	A Queueâ€Ordered Layered Mnâ€Based Oxides with Al Substitution as Highâ€Rate and Highâ€Stabilized Cathode for Sodiumâ€Ion Batteries. Small, 2021, 17, e2006259.	10.0	22
11	Fullâ€Temperature Allâ€Solidâ€State Ti ₃ C ₂ T <i>>_x</i> /Aramid Fiber Supercapacitor with Optimal Balance of Capacitive Performance and Flexibility. Advanced Functional Materials, 2021, 31, 2010944.	14.9	63
12	Connecting PEDOT Nanotube Arrays by Polyaniline Coating toward a Flexible and High-Rate Supercapacitor. ACS Sustainable Chemistry and Engineering, 2021, 9, 4146-4156.	6.7	36
13	Ultraâ€Large Sized Siloxene Nanosheets as Bifunctional Photocatalyst for a Liâ€O ₂ Battery with Superior Roundâ€Trip Efficiency and Extraâ€Long Durability. Angewandte Chemie - International Edition, 2021, 60, 11257-11261.	13.8	53
14	Ti2Nb2O9/graphene hybrid anode with superior rate capability for high-energy-density sodium-ion capacitors. Journal of Alloys and Compounds, 2021, 860, 158431.	5.5	14
15	Ultraâ€Large Sized Siloxene Nanosheets as Bifunctional Photocatalyst for a Liâ€O ₂ Battery with Superior Roundâ€Trip Efficiency and Extraâ€Long Durability. Angewandte Chemie, 2021, 133, 11357-11361.	2.0	10
16	Lithium Storage in Carbon Cloth–Supported KNb 3 O 8 Nanorods Toward a Highâ€Performance Lithiumâ€lon Capacitor. Small Structures, 2021, 2, 2100029.	12.0	14
17	Formation Mechanism of Nitrogen-Doped Titanium Monoxide Nanospheres and Their Application as Sulfur Hosts in Lithium Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 5713-5726.	5.1	11
18	Lithium Storage in Carbon Cloth–Supported KNb ₃ O ₈ Nanorods Toward a Highâ€Performance Lithiumâ€Ion Capacitor. Small Structures, 2021, 2, 2170021.	12.0	3

#	Article	IF	CITATIONS
19	Cotton fabric-derived hybrid carbon network with N-doped carbon nanotubes grown vertically as flexible multifunctional electrodes for high-rate capacitive energy storage. Journal of Power Sources, 2021, 507, 230303.	7.8	9
20	Battery-type graphene/BiOBr composite for high-performance asymmetrical supercapacitor. Journal of Alloys and Compounds, 2020, 812, 152087.	5.5	39
21	Phosphate ion functionalized Co3O4 nanosheets/RGO with improved electrochemical performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124232.	4.7	5
22	Hollow Structure VS ₂ @Reduced Graphene Oxide (RGO) Architecture for Enhanced Sodiumâ€ion Battery Performance. ChemElectroChem, 2020, 7, 78-85.	3.4	33
23	Coral-like PEDOT Nanotube Arrays on Carbon Fibers as High-Rate Flexible Supercapacitor Electrodes. ACS Applied Energy Materials, 2020, 3, 7794-7803.	5.1	55
24	Synthesis of Ti4O7/Ti3O5 Dual-Phase Nanofibers with Coherent Interface for Oxygen Reduction Reaction Electrocatalysts. Materials, 2020, 13, 3142.	2.9	11
25	Porous PEDOT Network Coated on MoS ₂ Nanobelts toward Improving Capacitive Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 12696-12705.	6.7	21
26	Few-layer and large flake size borophene: preparation with solvothermal-assisted liquid phase exfoliation. RSC Advances, 2020, 10, 27532-27537.	3.6	32
27	MoS ₂ nanosheets grown on hollow carbon spheres as a strong polysulfide anchor for high performance lithium sulfur batteries. Nanoscale, 2020, 12, 23636-23644.	5.6	25
28	Boosting Pseudocapacitive Performance of KNb3O8 Nanorods by Growing on Textile Carbon Cloth and Carbon Layer Coating. Journal of Physical Chemistry C, 2020, 124, 11358-11367.	3.1	12
29	Hollow Structure VS 2 @Reduced Graphene Oxide (RGO) Architecture for Enhanced Sodiumâ€lon Battery Performance. ChemElectroChem, 2020, 7, 5-5.	3.4	18
30	Incorporation of electroactive NiCo2S4 and Fe2O3 into graphene aerogel for high-energy asymmetric supercapacitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125110.	4.7	17
31	Ti ₃ C ₂ T _{<i>x</i>} Nanosheets/Ti ₃ C ₂ T _{<i>x</i>} Quantum Dots/RGO (Reduced) Tj ETQq1 1 0 Density and Good Flexibility. ACS Applied Materials & Samp: Interfaces, 2020, 12, 11833-11842.	.784314 r 8.0	gBT/Overlo
32	Design and synthesis of carbon nanofibers decorated by dual-phase TinO2n-1 nanoparticles with synergistic catalytic effect as high performance oxygen reduction reaction catalysts. Electrochimica Acta, 2020, 344, 136120.	5.2	9
33	Electrospun Nb2O5 nanorods/microporous multichannel carbon nanofiber film anode for Na+ ion capacitors with good performance. Journal of Colloid and Interface Science, 2020, 573, 1-10.	9.4	29
34	(TiO ₂ (B) Nanosheet)/(Metallic Phase MoS ₂) Hybrid Nanostructures: An Efficient Catalyst for Photocatalytic Hydrogen Evolution. Solar Rrl, 2019, 3, 1900323.	5.8	18
35	Formation mechanisms of interfaces between different Ti _n O _{2nâ^1} phases prepared by carbothermal reduction reaction. CrystEngComm, 2019, 21, 524-534.	2.6	28
36	Nitrogen-doped carbon sheets coated on CoNiO ₂ @textile carbon as bifunctional electrodes for asymmetric supercapacitors. Journal of Materials Chemistry A, 2019, 7, 4165-4174.	10.3	67

#	Article	IF	Citations
37	Textile carbon network with enhanced areal capacitance prepared by chemical activation of cotton cloth. Journal of Colloid and Interface Science, 2019, 553, 705-712.	9.4	51
38	Direct growth of flake-like metal-organic framework on textile carbon cloth as high-performance supercapacitor electrode. Journal of Power Sources, 2019, 428, 124-130.	7.8	70
39	Facile synthesis of Ti ₄ O ₇ on hollow carbon spheres with enhanced polysulfide binding for high-performance lithiumâ€"sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 10494-10504.	10.3	43
40	Intercalation and delamination behavior of Ti ₃ C ₂ T _x and MnO ₂ /Ti ₃ C ₂ T _x /RGO flexible fibers with high volumetric capacitance. Journal of Materials Chemistry A, 2019, 7, 12582-12592.	10.3	48
41	A Lowâ€Cost and Facile Method for the Preparation of Feâ€N/Câ€Based Hybrids with Superior Catalytic Performance toward Oxygen Reduction Reaction. Advanced Materials Interfaces, 2019, 6, 1900273.	3.7	25
42	Highly Compressible Carbon Sponge Supercapacitor Electrode with Enhanced Performance by Growing Nickel–Cobalt Sulfide Nanosheets. ACS Applied Materials & Diterfaces, 2018, 10, 10087-10095.	8.0	111
43	Thermodynamics and Kinetics Synergetic Phase-Engineering of Chemical Vapor Deposition Grown Single Crystal MoTe ₂ Nanosheets. Crystal Growth and Design, 2018, 18, 2844-2850.	3.0	22
44	Tuning the catalytic activity of colloidal noble metal nanocrystals by using differently charged surfactants. Nanoscale, 2018, 10, 5607-5616.	5.6	14
45	Solvothermal-assisted liquid-phase exfoliation of large size and high quality black phosphorus. Journal of Materiomics, 2018, 4, 129-134.	5.7	31
46	On the growth morphology and crystallography of the epitaxial Cu ₇ Te ₄ /CdTe interface. CrystEngComm, 2018, 20, 1050-1056.	2.6	4
47	Holey nickel-cobalt layered double hydroxide thin sheets with ultrahigh areal capacitance. Journal of Power Sources, 2018, 387, 108-116.	7.8	97
48	Simultaneous enhancement of red upconversion luminescence and CT contrast of NaGdF ₄ :Yb,Er nanoparticles <i>via</i> Lu ³⁺ doping. Nanoscale, 2018, 10, 20279-20288.	5 . 6	32
49	Nb ₂ O ₅ Nanoparticles Anchored on an N-Doped Graphene Hybrid Anode for a Sodium-Ion Capacitor with High Energy Density. ACS Omega, 2018, 3, 15943-15951.	3.5	30
50	Enhancing the Capacitive Performance of Carbonized Wood by Growing FeOOH Nanosheets and Poly(3,4-ethylenedioxythiophene) Coating. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32192-32200.	8.0	50
51	Metallic-Phase MoS ₂ Nanopetals with Enhanced Electrocatalytic Activity for Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 13435-13442.	6.7	48
52	Design of Palladium-Doped <i>g</i> -C ₃ N ₄ for Enhanced Photocatalytic Activity toward Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 2866-2873.	5.1	76
53	CoNi ₂ S ₄ Nanoparticle/Carbon Nanotube Sponge Cathode with Ultrahigh Capacitance for Highly Compressible Asymmetric Supercapacitor. Small, 2018, 14, e1800998.	10.0	87
54	Layer-Stacking Activated Carbon Derived from Sunflower Stalk as Electrode Materials for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 11397-11407.	6.7	118

#	Article	IF	CITATIONS
55	Free-standing graphene/bismuth vanadate monolith composite as a binder-free electrode for symmetrical supercapacitors. RSC Advances, 2018, 8, 24796-24804.	3.6	48
56	Facile preparation of partially reduced graphite oxide nanosheets as a binder-free electrode for supercapacitors. RSC Advances, 2018, 8, 28987-28996.	3.6	0
57	Rational design and controllable preparation of holey MnO ₂ nanosheets. Chemical Communications, 2017, 53, 2950-2953.	4.1	18
58	Enhanced high-order ultraviolet upconversion luminescence in sub-20 nm β-NaYbF ₄ :0.5% Tm nanoparticles via Fe ³⁺ doping. CrystEngComm, 2017, 19, 1304-1310.	2.6	43
59	Highly flexible all-solid-state cable-type supercapacitors based on Cu/reduced graphene oxide/manganese dioxide fibers. RSC Advances, 2017, 7, 10092-10099.	3.6	25
60	Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer. Nano Research, 2017, 10, 2732-2742.	10.4	69
61	Reduced graphene oxide/Mn 3 O 4 nanocrystals hybrid fiber for flexible all-solid-state supercapacitor with excellent volumetric energy density. Electrochimica Acta, 2017, 242, 10-18.	5.2	71
62	Capacitive performance of porous carbon nanosheets derived from biomass cornstalk. RSC Advances, 2017, 7, 1067-1074.	3.6	44
63	Sub-10 nm Water-Dispersible \hat{I}^2 -NaGdF ₄ : <i>X</i> % Eu ³⁺ Nanoparticles with Enhanced Biocompatibility for in Vivo X-ray Luminescence Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dispersion of the American Science Computed Tomography. ACS Applied Materials & Dis	8.0	38
64	All solid-state V2O5-based flexible hybrid fiber supercapacitors. Journal of Power Sources, 2017, 371, 18-25.	7.8	36
65	Synthesis of Largeâ€Size 1T′ ReS ₂ <i>_x</i> >Se _{2(1â^²} <i>_x</i> >Monolayer with Tunable Bandgap and Carrier Type. Advanced Materials, 2017, 29, 1705015.	21.0	107
66	Preparation and formation process of î±-MnS@MoS2 microcubes with hierarchical core/shell structure. Journal of Colloid and Interface Science, 2017, 507, 18-26.	9.4	24
67	Facile Electrochemical Fabrication of Porous Fe ₂ O ₃ Nanosheets for Flexible Asymmetric Supercapacitors. Journal of Physical Chemistry C, 2017, 121, 18982-18991.	3.1	90
68	î-MnO ₂ nanofiber/single-walled carbon nanotube hybrid film for all-solid-state flexible supercapacitors with high performance. Journal of Materials Chemistry A, 2017, 5, 19107-19115.	10.3	44
69	Hierarchical graphene network sandwiched by a thin carbon layer for capacitive energy storage. Carbon, 2017, 113, 100-107.	10.3	39
70	Morphological and Interfacial Control of Platinum Nanostructures for Electrocatalytic Oxygen Reduction. ACS Catalysis, 2016, 6, 5260-5267.	11.2	117
71	Polyaniline Nanorods Grown on Hollow Carbon Fibers as Highâ€Performance Supercapacitor Electrodes. ChemElectroChem, 2016, 3, 1142-1149.	3.4	24
72	Telluriumâ€Assisted Epitaxial Growth of Largeâ€Area, Highly Crystalline ReS ₂ Atomic Layers on Mica Substrate. Advanced Materials, 2016, 28, 5019-5024.	21.0	169

#	Article	IF	Citations
73	Holey graphene/polypyrrole nanoparticle hybrid aerogels with three-dimensional hierarchical porous structure for high performance supercapacitor. Journal of Power Sources, 2016, 317, 10-18.	7.8	87
74	î-MnO ₂ /holey graphene hybrid fiber for all-solid-state supercapacitor. Journal of Materials Chemistry A, 2016, 4, 9088-9096.	10.3	101
75	Unraveling the Mechanism of the Zn-Improved Catalytic Activity of Pd-Based Catalysts for Water–Gas Shift Reaction. Journal of Physical Chemistry C, 2016, 120, 20181-20191.	3.1	9
76	High-energy asymmetric electrochemical capacitors based on oxides functionalized hollow carbon fibers electrodes. Nano Energy, 2016, 30, 9-17.	16.0	70
77	Sandwich-structured Au@polyallylamine@Pd nanostructures: tuning the electronic properties of the Pd shell for electrocatalysis. Journal of Materials Chemistry A, 2016, 4, 12020-12024.	10.3	25
78	Atomic Layers: Tellurium-Assisted Epitaxial Growth of Large-Area, Highly Crystalline ReS2 Atomic Layers on Mica Substrate (Adv. Mater. 25/2016). Advanced Materials, 2016, 28, 5018-5018.	21.0	5
79	Biomass-Derived Carbon Fiber Aerogel as a Binder-Free Electrode for High-Rate Supercapacitors. Journal of Physical Chemistry C, 2016, 120, 2079-2086.	3.1	274
80	Mn 3 O 4 nanocrystalline/graphene hybrid electrode with high capacitance. Electrochimica Acta, 2016, 188, 398-405.	5.2	33
81	A one-pot gold seed-assisted synthesis of gold/platinum wire nanoassemblies and their enhanced electrocatalytic activity for the oxidation of oxalic acid. Nanoscale, 2016, 8, 2875-2880.	5.6	29
82	Formation process of holey graphene and its assembled binder-free film electrode with high volumetric capacitance. Electrochimica Acta, 2016, 187, 543-551.	5.2	94
83	Thinâ€Sheet Carbon Nanomesh with an Excellent Electrocapacitive Performance. Advanced Functional Materials, 2015, 25, 5420-5427.	14.9	139
84	Carbon Nanomeshes: Thinâ€Sheet Carbon Nanomesh with an Excellent Electrocapacitive Performance (Adv. Funct. Mater. 34/2015). Advanced Functional Materials, 2015, 25, 5406-5406.	14.9	5
85	Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon, 2015, 93, 315-324.	10.3	395
86	Sn–Co nanoparticles encapsulated in grid-shell carbon spheres, applied as a high-performance anode material for lithium-ion batteries. RSC Advances, 2015, 5, 53586-53591.	3.6	7
87	Three-Dimensional Tubular MoS ₂ /PANI Hybrid Electrode for High Rate Performance Supercapacitor. ACS Applied Materials & Supercapacitor. ACS Applied Material	8.0	231
88	Reduction degree and property study of graphene nanosheets prepared with different reducing agents and their applicability as a carrier of the Ru(phen) ₃ Cl ₂ luminescent sensor for DNA detection. RSC Advances, 2015, 5, 26856-26862.	3.6	5
89	Mesoporous-assembled MnO ₂ with large specific surface area. Journal of Materials Chemistry A, 2015, 3, 14567-14572.	10.3	14
90	Activation of graphene aerogel with phosphoric acid for enhanced electrocapacitive performance. Carbon, 2015, 92, 1-10.	10.3	193

#	Article	IF	CITATIONS
91	Ethanol-tolerant polyethyleneimine functionalized palladium nanowires in alkaline media: the "molecular window gauze―induced the selectivity for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 21083-21089.	10.3	32
92	High performance graphene/manganese oxide hybrid electrode with flexible holey structure. Electrochimica Acta, 2014, 129, 237-244.	5.2	28
93	RuO2/graphene hybrid material for high performance electrochemical capacitor. Journal of Power Sources, 2014, 248, 407-415.	7.8	120
94	A new type of ordered mesoporous carbon/polyaniline composites prepared by a two-step nanocasting method for high performance supercapacitor applications. Journal of Materials Chemistry A, 2014, 2, 16715-16722.	10.3	40
95	Creation of nanopores on graphene planes with MgO template for preparing high-performance supercapacitor electrodes. Nanoscale, 2014, 6, 6577-6584.	5.6	127
96	MnO ₂ nanoflakes grown on 3D graphite network for enhanced electrocapacitive performance. RSC Advances, 2014, 4, 30233-30240.	3.6	30
97	Fluoride anions-assisted hydrothermal preparation and growth process of Î ² -MnO2 with bipyramid prism morphology. CrystEngComm, 2013, 15, 6682.	2.6	16
98	A high-energy-density supercapacitor with graphene–CMK-5 as the electrode and ionic liquid as the electrolyte. Journal of Materials Chemistry A, 2013, 1, 2313.	10.3	186
99	Graphene/VO2 hybrid material for high performance electrochemical capacitor. Electrochimica Acta, 2013, 112, 448-457.	5.2	107
100	Phase Transition Behavior and Large Piezoelectricity Near the Morphotropic Phase Boundary of Leadâ€Free (<scp><scp>Ba</scp></scp> Ca	:p> ³ {8scp>	_{0.1}
101	Giant Dielectric Constant and Good Temperature Stability in <pre><scp>Y</scp>Ceramics. Journal of the American Ceramic Society, 2012, 95, 2218-2225.</pre>	>< 318 b>4<	/suba≺scp><
102	Preparation of Ag-Nanoparticle-Loaded MnO ₂ Nanosheets and Their Capacitance Behavior. Energy & Energ	5.1	82
103	Novel synthesis and formation process of uniform Mn2O3 cubes. CrystEngComm, 2012, 14, 8253.	2.6	14
104	Functional graphene nanocomposite as an electrode for the capacitive removal of FeCl3 from water. Journal of Materials Chemistry, 2012, 22, 14101.	6.7	48
105	Electrochemical Property of Manganese Oxide Nanobelt Bundles with Layered Structure. Chinese Journal of Chemistry, 2012, 30, 299-302.	4.9	1
106	Synthesis and capacitive property of \hat{l} -MnO2 with large surface area. Journal of Materials Science, 2012, 47, 999-1003.	3.7	25
107	Graphene–MnO2 and graphene asymmetrical electrochemical capacitor with a high energy density in aqueous electrolyte. Journal of Power Sources, 2011, 196, 10782-10787.	7.8	161
108	Preparation and capacitive property of manganese oxide nanobelt bundles with birnessite-type structure. Journal of Power Sources, 2011, 196, 855-859.	7.8	86

#	Article	IF	CITATIONS
109	Phase coexistence and high electrical properties in (KxNa0.96â^'xLi0.04)(Nb0.85Ta0.15)O3 piezoelectric ceramics. Journal of Applied Physics, 2009, 105, 054101.	2.5	41
110	Controlled synthesis and characterization of layered manganese oxide nanostructures with different morphologies. Journal of Nanoparticle Research, 2009, 11, 1107-1115.	1.9	17
111	Phase Structure, Microstructure, and Electrical Properties of Sbâ€Modified (K, Na, Li) (Nb, Ta) O ₃ Piezoelectric Ceramics. Journal of the American Ceramic Society, 2008, 91, 2211-2216.	3.8	33
112	Controllable synthesis, characterization, and electrochemical properties of manganese oxide nanoarchitectures. Journal of Materials Research, 2008, 23, 780-789.	2.6	22
113	Phase transitional behavior, microstructure, and electrical properties in Ta-modified [(K0.458Na0.542)0.96Li0.04]â€^NbO3 lead-free piezoelectric ceramics. Journal of Applied Physics, 2008, 104, .	2.5	72
114	Preparation, ion-exchange, and electrochemical behavior of Cs-type manganese oxides with a novel hexagonal-like morphology. Journal of Materials Research, 2007, 22, 2437-2447.	2.6	9
115	Effects of Li content on the phase structure and electrical properties of lead-free (KO.46â^xâ^•2NaO.54â^xâ^•2Lix)(NbO.76TaO.20SbO.04)O3 ceramics. Applied Physics Letters, 2007, 90, 232905.	3.3	73
116	Research on Fabrication Conditions of TiO2 Pillared Porous Manganese Oxide Nanocompound. Journal of Ion Exchange, 2007, 18, 346-351.	0.3	0
117	Crystal structure of dimethylammonium bis(salicylato)borate, [NH2(CH3)2][BO4(C7H4O)2]. Zeitschrift Fur Kristallographie - New Crystal Structures, 2006, 221, 179-180.	0.3	O
118	Crystal structure of pyridinium tetrahydroxyhexaoxopentaborate pyridine hemisolvate, (C5H6N)[B5O6(OH)4] · ½C5H5N. Zeitschrift Fur Kristallographie - New Crystal Structures, 2006, 221, 189-190.	0.3	1
119	New Rare Earth(III) Complexes with H2tmtaa. Chinese Journal of Chemistry, 2006, 24, 1363-1367.	4.9	1
120	Swelling and Delamination Behaviors of Birnessite-Type Manganese Oxide by Intercalation of Tetraalkylammonium Ions. Langmuir, 2000, 16, 4154-4164.	3.5	234