Shao-hua Xiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9222258/publications.pdf

Version: 2024-02-01

54 papers

3,057 citations

30 h-index 53 g-index

72 all docs 72 docs citations

times ranked

72

1817 citing authors

#	Article	IF	CITATIONS
1	Recent Advances in Catalytic Asymmetric Construction of Atropisomers. Chemical Reviews, 2021, 121, 4805-4902.	47.7	499
2	Asymmetric phosphoric acid–catalyzed four-component Ugi reaction. Science, 2018, 361, .	12.6	150
3	Chiral Phosphoric Acid Catalyzed Atroposelective Câ^'H Amination of Arenes. Angewandte Chemie - International Edition, 2020, 59, 6775-6779.	13.8	139
4	Advances in asymmetric organocatalysis over the last 10 years. Nature Communications, 2020, 11, 3786.	12.8	135
5	Asymmetric construction of atropisomeric biaryls via a redox neutral cross-coupling strategy. Nature Catalysis, 2019, 2, 314-323.	34.4	112
6	Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of Axially Chiral Compounds ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1787-1796.	4.9	111
7	A Unique Pharmacophore for Activation of the Nuclear Orphan Receptor Nur77 <i>In vivo</i> and <i>In vitro</i> . Cancer Research, 2010, 70, 3628-3637.	0.9	94
8	Direct <i>C</i> -Glycosylation of Organotrifluoroborates with Glycosyl Fluorides and Its Application to the Total Synthesis of (+)-Varitriol. Organic Letters, 2011, 13, 42-45.	4.6	92
9	Organocatalytic atroposelective construction of axially chiral arylquinones. Nature Communications, 2019, 10, 4268.	12.8	92
10	Phosphoric acid-catalyzed atroposelective construction of axially chiral arylpyrroles. Nature Communications, 2019, 10, 566.	12.8	89
11	Organocatalytic Enantioselective Synthesis of Atropisomeric Arylâ€∢i>p∢/i>â€Quinones: Platform Molecules for Diversityâ€Oriented Synthesis of Biaryldiols. Angewandte Chemie - International Edition, 2020, 59, 11374-11378.	13.8	85
12	Regio- and Stereoselective Synthesis of 2-Deoxy- <i>C</i> -aryl Glycosides via Palladium Catalyzed Decarboxylative Reactions. Organic Letters, 2011, 13, 4608-4611.	4.6	83
13	DFT-Guided Phosphoric-Acid-Catalyzed Atroposelective Arene Functionalization of Nitrosonaphthalene. CheM, 2020, 6, 2046-2059.	11.7	83
14	Practical Route to 2-Quinolinones via a Pd-Catalyzed Câ€"H Bond Activation/Câ€"C Bond Formation/Cyclization Cascade Reaction. Organic Letters, 2015, 17, 222-225.	4.6	78
15	Asymmetric Construction of Axially Chiral 2â€Arylpyrroles by Chirality Transfer of Atropisomeric Alkenes. Angewandte Chemie - International Edition, 2019, 58, 13443-13447.	13.8	7 5
16	Stereoselective βâ€ <i>C</i> â€Glycosylation by a Palladiumâ€Catalyzed Decarboxylative Allylation: Formal Synthesis of Aspergillideâ€A. Angewandte Chemie - International Edition, 2013, 52, 5134-5137.	13.8	69
17	Michael Reaction Inspired Atroposelective Construction of Axially Chiral Biaryls. Journal of the American Chemical Society, 2020, 142, 7322-7327.	13.7	57
18	Chiral Phosphoric Acid-Catalyzed Remote Control of Axial Chirality at Boron–Carbon Bond. Journal of the American Chemical Society, 2021, 143, 12924-12929.	13.7	51

#	Article	IF	Citations
19	Atroposelective Construction of Arylindoles by Chiral Phosphoric Acid-Catalyzed Cross-Coupling of Indoles and Quinones. Organic Letters, 2019, 21, 6000-6004.	4.6	49
20	Chiral Phosphoric Acid Creates Promising Opportunities for Enantioselective Photoredox Catalysis. Chinese Journal of Chemistry, 2020, 38, 213-214.	4.9	48
21	Asymmetric Pnictogen-Bonding Catalysis: Transfer Hydrogenation by a Chiral Antimony(V) Cation/Anion Pair. Journal of the American Chemical Society, 2021, 143, 6382-6387.	13.7	46
22	Axially chiral alkenes: Atroposelective synthesis and applications., 2022, 1, 100009.		46
23	Dual-function Pd/NHC catalysis: tandem allylation–isomerization–conjugate addition that allows access to pyrroles, thiophenes and furans. Chemical Communications, 2014, 50, 6168.	4.1	43
24	Remote Control of Axial Chirality: Synthesis of Spirooxindole–Urazoles via Desymmetrization of ATAD. Organic Letters, 2018, 20, 6022-6026.	4.6	43
25	Nitrosobenzeneâ€Enabled Chiral Phosphoric Acid Catalyzed Enantioselective Construction of Atropisomeric <i>N</i> â€Arylbenzimidazoles. Angewandte Chemie - International Edition, 2021, 60, 24888-24893.	13.8	43
26	Catalyst-Controlled Stereoselective $\langle i \rangle O \langle i \rangle$ -Glycosylation: Pd(0) vs Pd(II). ACS Catalysis, 2017, 7, 5456-5460.	11.2	42
27	Reversing the Stereoselectivity of a Palladiumâ€Catalyzed Oâ€Glycosylation through an Innerâ€Sphere or Outerâ€Sphere Pathway. Angewandte Chemie - International Edition, 2015, 54, 604-607.	13.8	40
28	Urea group-directed organocatalytic asymmetric versatile dihalogenation of alkenes and alkynes. Nature Catalysis, 2021, 4, 692-702.	34.4	40
29	Chiral Phosphoric Acid Catalyzed Atroposelective Câ^'H Amination of Arenes. Angewandte Chemie, 2020, 132, 6841-6845.	2.0	39
30	βâ€Type Glycosidic Bond Formation by Palladiumâ€Catalyzed Decarboxylative Allylation. Chemistry - A European Journal, 2013, 19, 14047-14051.	3.3	32
31	Enantioselective three-component Ugi reaction catalyzed by chiral phosphoric acid. Science China Chemistry, 2020, 63, 47-54.	8.2	32
32	Metal-free oxidative cross-coupling enabled practical synthesis of atropisomeric QUINOL and its derivatives. Nature Communications, 2021, 12, 2384.	12.8	32
33	Palladium-Catalyzed Glycosylation: Novel Synthetic Approach to Diverse <i>N</i> -Heterocyclic Glycosides. Organic Letters, 2015, 17, 1357-1360.	4.6	30
34	Asymmetric Construction of Axially Chiral 2â€Arylpyrroles by Chirality Transfer of Atropisomeric Alkenes. Angewandte Chemie, 2019, 131, 13577-13581.	2.0	30
35	One-pot synthesis of \hat{l}^2 -N-glycosyl imidazole analogues via a palladium-catalysed decarboxylative allylation. Chemical Communications, 2014, 50, 4222.	4.1	28
36	Stereocontrolled <i>O</i> -Glycosylation with Palladium-Catalyzed Decarboxylative Allylation. Journal of Organic Chemistry, 2014, 79, 11473-11482.	3.2	27

3

#	Article	IF	Citations
37	Palladium-Catalyzed Decarboxylative Allylation/Wittig Reaction: Substrate-Controlled Synthesis of <i>C</i> -Vinyl Glycosides. Organic Letters, 2017, 19, 416-419.	4.6	26
38	Palladiumâ€Catalyzed Stereoselective <i>C</i> à€Glycosylation of Glycals with Sodium Arylsulfinates. European Journal of Organic Chemistry, 2015, 2015, 949-952.	2.4	24
39	Organocatalytic Enantioselective Synthesis of Atropisomeric Aryl―p â€Quinones: Platform Molecules for Diversityâ€Oriented Synthesis of Biaryldiols. Angewandte Chemie, 2020, 132, 11470-11474.	2.0	23
40	Facile synthesis of carbohydrate-integrated isoxazolines through tandem [4+1] cycloaddition and rearrangement of 2-nitroglycals. Chemical Communications, 2011, 47, 8676.	4.1	22
41	A versatile approach to cis-5-substituted 4-hydroxy-2-pyrrolidinones: asymmetric synthesis of angiogenesis inhibitor streptopyrrolidine. Tetrahedron: Asymmetry, 2009, 20, 2021-2026.	1.8	16
42	Amide Activation by Tf2O: Reduction of Amides to Amines by NaBH4 under Mild Conditions. Synlett, 2010, 2010, 1829-1832.	1.8	15
43	Regio and stereoselective synthesis of \hat{I}^2 -keto functionalized C-glycosides via iron catalyzed Ferrier rearrangement reactions. RSC Advances, 2014, 4, 34816-34822.	3.6	15
44	Synthesis of structurally diversified BINOLs and NOBINs via palladium-catalyzed C-H arylation with diazoquinones. Science China Chemistry, 2021, 64, 1515-1521.	8.2	15
45	Stereoselective Construction of Complex Spirooxindoles via Bisthiourea Catalyzed Threeâ€Component Reactions. Chinese Journal of Chemistry, 2018, 36, 1182-1186.	4.9	14
46	Direct Construction of <scp>NOBINs</scp> <i>via</i> Domino Arylation and Sigmatropic Rearrangement Reactions. Chinese Journal of Chemistry, 2020, 38, 1503-1514.	4.9	14
47	Stereoselective synthesis of \hat{I}^2 -N-glycosides through 2-deoxy-2-nitroglycal. Carbohydrate Research, 2011, 346, 2957-2959.	2.3	10
48	Electrochemical phenothiazination of naphthylamines and its application in photocatalysis. Chemical Communications, 2021, 57, 8512-8515.	4.1	10
49	Nitrosobenzeneâ€Enabled Chiral Phosphoric Acid Catalyzed Enantioselective Construction of Atropisomeric Nâ€Arylbenzimidazoles. Angewandte Chemie, 0, , .	2.0	9
50	Organocatalytic double arylation of 3-isothiocyanato oxindoles: Stereocontrolled synthesis of complex spirooxindoles. Tetrahedron, 2019, 75, 1689-1696.	1.9	7
51	Asymmetric synthesis of binaphthyls through photocatalytic cross-coupling and organocatalytic kinetic resolution. Science China Chemistry, 2022, 65, 1142-1148.	8.2	6
52	Copper-Catalyzed Synthesis of Axially Chiral Biaryls with Diaryliodonium Salts as Arylation Reagents. Molecules, 2021, 26, 3223.	3.8	4
53	Facile synthesis of <i>N</i> -aryl phenothiazines and phenoxazines <i>via</i> Brønsted acid catalyzed C–H amination of arenes. Chemical Communications, 2022, 58, 1613-1616.	4.1	3
54	Direct arylation of N-heterocycles enabled by photoredox catalysis. Chemical Communications, 2022, 58, 4392-4395.	4.1	2