List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9222104/publications.pdf Version: 2024-02-01

LEKANC

#	Article	IF	CITATIONS
1	Grassland ecosystems in China: review of current knowledge and research advancement. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 997-1008.	4.0	489
2	The locust genome provides insight into swarm formation and long-distance flight. Nature Communications, 2014, 5, 2957.	12.8	437
3	CSP and Takeout Genes Modulate the Switch between Attraction and Repulsion during Behavioral Phase Change in the Migratory Locust. PLoS Genetics, 2011, 7, e1001291.	3.5	245
4	De Novo Analysis of Transcriptome Dynamics in the Migratory Locust during the Development of Phase Traits. PLoS ONE, 2010, 5, e15633.	2.5	215
5	The analysis of large-scale gene expression correlated to the phase changes of the migratory locust. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17611-17615.	7.1	197
6	Heavy Livestock Grazing Promotes Locust Outbreaks by Lowering Plant Nitrogen Content. Science, 2012, 335, 467-469.	12.6	180
7	Modulation of behavioral phase changes of the migratory locust by the catecholamine metabolic pathway. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3882-3887.	7.1	175
8	Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust. Genome Biology, 2009, 10, R6.	9.6	174
9	Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust. Molecular Ecology, 2012, 21, 4344-4358.	3.9	171
10	Role of Tomato Lipoxygenase D in Wound-Induced Jasmonate Biosynthesis and Plant Immunity to Insect Herbivores. PLoS Genetics, 2013, 9, e1003964.	3.5	166
11	Roles of Thermal Adaptation and Chemical Ecology in <i>Liriomyza</i> Distribution and Control. Annual Review of Entomology, 2009, 54, 127-145.	11.8	154
12	Closely Related NAC Transcription Factors of Tomato Differentially Regulate Stomatal Closure and Reopening during Pathogen Attack Â. Plant Cell, 2014, 26, 3167-3184.	6.6	153
13	Evolution of heatâ€shock protein expression underlying adaptive responses to environmental stress. Molecular Ecology, 2018, 27, 3040-3054.	3.9	148
14	Cloning and interspecific altered expression of heat shock protein genes in two leafminer species in response to thermal stress. Insect Molecular Biology, 2007, 16, 491-500.	2.0	135
15	Impact of mild temperature hardening on thermotolerance, fecundity, and Hsp gene expression in Liriomyza huidobrensis. Journal of Insect Physiology, 2007, 53, 1199-1205.	2.0	125
16	Molecular Mechanisms of Phase Change in Locusts. Annual Review of Entomology, 2014, 59, 225-244.	11.8	125
17	A <i>k</i> -mer scheme to predict piRNAs and characterize locust piRNAs. Bioinformatics, 2011, 27, 771-776.	4.1	122
18	CRISPR/Cas9 in locusts: Successful establishment of an olfactory deficiency line by targeting the mutagenesis of an odorant receptor co-receptor (Orco). Insect Biochemistry and Molecular Biology, 2016, 79, 27-35.	2.7	119

#	Article	IF	CITATIONS
19	4-Vinylanisole is an aggregation pheromone in locusts. Nature, 2020, 584, 584-588.	27.8	117
20	Cloning and expression of five heat shock protein genes in relation to cold hardening and development in the leafminer, Liriomyza sativa. Journal of Insect Physiology, 2009, 55, 279-285.	2.0	116
21	Viral effector protein manipulates host hormone signaling to attract insect vectors. Cell Research, 2017, 27, 402-415.	12.0	115
22	Identification and functional analysis of olfactory receptor family reveal unusual characteristics of the olfactory system in the migratory locust. Cellular and Molecular Life Sciences, 2015, 72, 4429-4443.	5.4	107
23	Strategies to alleviate poverty and grassland degradation in Inner Mongolia: Intensification vs production efficiency of livestock systems. Journal of Environmental Management, 2015, 152, 177-182.	7.8	106
24	Genome sequence of the small brown planthopper, Laodelphax striatellus. GigaScience, 2017, 6, 1-12.	6.4	106
25	Chemotaxis of the Pinewood Nematode, Bursaphelenchus xylophilus, to Volatiles Associated with Host Pine, Pinus massoniana, and its Vector Monochamus alternatus. Journal of Chemical Ecology, 2007, 33, 1207-1216.	1.8	100
26	MicroRNA-133 Inhibits Behavioral Aggregation by Controlling Dopamine Synthesis in Locusts. PLoS Genetics, 2014, 10, e1004206.	3.5	96
27	Armet is an effector protein mediating aphidâ€plant interactions. FASEB Journal, 2015, 29, 2032-2045.	0.5	96
28	Metabolomic analysis reveals that carnitines are key regulatory metabolites in phase transition of the locusts. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3259-3263.	7.1	89
29	miR-71 and miR-263 Jointly Regulate Target Genes Chitin synthase and Chitinase to Control Locust Molting. PLoS Genetics, 2016, 12, e1006257.	3.5	87
30	MicroRNA-276 promotes egg-hatching synchrony by up-regulating <i>brm</i> in locusts. Proceedings of the United States of America, 2016, 113, 584-589.	7.1	84
31	Plants Attract Parasitic Wasps to Defend Themselves against Insect Pests by Releasing Hexenol. PLoS ONE, 2007, 2, e852.	2.5	83
32	Reciprocal crosstalk between jasmonate and salicylate defence-signalling pathways modulates plant volatile emission and herbivore host-selection behaviour. Journal of Experimental Botany, 2014, 65, 3289-3298.	4.8	80
33	Altered Immunity in Crowded Locust Reduced Fungal (Metarhizium anisopliae) Pathogenesis. PLoS Pathogens, 2013, 9, e1003102.	4.7	79
34	Molecular characterization and expression of prothoracicotropic hormone during development and pupal diapause in the cotton bollworm, Helicoverpa armigera. Journal of Insect Physiology, 2005, 51, 691-700.	2.0	75
35	Differential responses to warming and increased precipitation among three contrasting grasshopper species. Global Change Biology, 2009, 15, 2539-2548.	9.5	75
36	Roles of (Z)-3-hexenol in plant-insect interactions. Plant Signaling and Behavior, 2011, 6, 369-371.	2.4	74

#	Article	lF	CITATIONS
37	The SID-1 double-stranded RNA transporter is not required for systemic RNAi in the migratory locust. RNA Biology, 2012, 9, 663-671.	3.1	72
38	Genome-wide identification and developmental expression profiling of long noncoding RNAs during Drosophila metamorphosis. Scientific Reports, 2016, 6, 23330.	3.3	72
39	Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda. Protein and Cell, 2022, 13, 513-531.	11.0	72
40	The complete mitochondrial genomes of two band-winged grasshoppers, Gastrimargus marmoratus and Oedaleus asiaticus. BMC Genomics, 2009, 10, 156.	2.8	69
41	Cloning and expression analysis of six small heat shock protein genes in the common cutworm, Spodoptera litura. Journal of Insect Physiology, 2011, 57, 908-914.	2.0	65
42	Octopamine and tyramine respectively regulate attractive and repulsive behavior in locust phase changes. Scientific Reports, 2015, 5, 8036.	3.3	65
43	Identification of a POU factor involved in regulating the neuron-specific expression of the gene encoding diapause hormone and pheromone biosynthesis-activating neuropeptide in Bombyx mori. Biochemical Journal, 2004, 380, 255-263.	3.7	63
44	The c-Jun N-terminal kinase pathway of a vector insect is activated by virus capsid protein and promotes viral replication. ELife, 2017, 6, .	6.0	62
45	LocustDB: a relational database for the transcriptome and biology of the migratory locust (Locusta) Tj ETQq1 1	0.784314	rgBT/Overlo
46	Electrophysiological and Behavioral Responses of a Parasitic Wasp to Plant Volatiles Induced by Two Leaf Miner Species. Chemical Senses, 2006, 31, 467-477.	2.0	59
47	Two single mutations commonly cause qualitative change of nonspecific carboxylesterases in insects. Insect Biochemistry and Molecular Biology, 2011, 41, 1-8.	2.7	59
48	Functional analysis of the SGNP I in the pupal diapause of the oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae). Regulatory Peptides, 2004, 118, 25-31.	1.9	57
49	Thermoperiodic acclimations enhance cold hardiness of the eggs of the migratory locust. Cryobiology, 2006, 53, 206-217.	0.7	52
50	Functional modulation of mitochondrial cytochrome c oxidase underlies adaptation to high-altitude hypoxia in a Tibetan migratory locust. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122758.	2.6	52
51	Geographical variation in egg cold hardiness: a study on the adaptation strategies of the migratory locust Locusta migratoria L Ecological Entomology, 2003, 28, 151-158.	2.2	51
52	Volatiles released from bean plants in response to agromyzid flies. Planta, 2006, 224, 279-287.	3.2	51
53	Differences in egg thermotolerance between tropical and temperate populations of the migratory locust Locusta migratoria (Orthoptera: Acridiidae). Journal of Insect Physiology, 2005, 51, 1277-1285.	2.0	50
54	Genetic variation in PTPN1 contributes to metabolic adaptation to high-altitude hypoxia in Tibetan migratory locusts. Nature Communications, 2018, 9, 4991.	12.8	50

#	Article	IF	CITATIONS
55	Elevated CO2 Reduces the Resistance and Tolerance of Tomato Plants to Helicoverpa armigera by Suppressing the JA Signaling Pathway. PLoS ONE, 2012, 7, e41426.	2.5	49
56	Variation in Cold Hardiness of <i>Liriomyza huidobrensis</i> (Diptera: Agromyzidae) Along Latitudinal Gradients. Environmental Entomology, 2004, 33, 155-164.	1.4	48
57	Dop1 enhances conspecific olfactory attraction by inhibiting miR-9a maturation in locusts. Nature Communications, 2018, 9, 1193.	12.8	48
58	Angiotensin-converting enzymes modulate aphid–plant interactions. Scientific Reports, 2015, 5, 8885.	3.3	47
59	Identification, expression pattern, and feature analysis of cuticular protein genes in the pine moth Dendrolimus punctatus (Lepidoptera: Lasiocampidae). Insect Biochemistry and Molecular Biology, 2017, 83, 94-106.	2.7	46
60	Different pathogenicities of Rice stripe virus from the insect vector and from viruliferous plants. New Phytologist, 2016, 210, 196-207.	7.3	45
61	Armet, an aphid effector protein, induces pathogen resistance in plants by promoting the accumulation of salicylic acid. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180314.	4.0	45
62	Different evolutionary lineages of large and small heat shock proteins in eukaryotes. Cell Research, 2008, 18, 1074-1076.	12.0	44
63	Elevated CO2 Influences Nematode-Induced Defense Responses of Tomato Genotypes Differing in the JA Pathway. PLoS ONE, 2011, 6, e19751.	2.5	44
64	Ecological tradeâ€offs between jasmonic acidâ€dependent direct and indirect plant defences in tritrophic interactions. New Phytologist, 2011, 189, 557-567.	7.3	44
65	Molecular characterization and expression profiles of neuropeptide precursors in the migratory locust. Insect Biochemistry and Molecular Biology, 2015, 63, 63-71.	2.7	44
66	Organ-specific transcriptome response of the small brown planthopper toward rice stripe virus. Insect Biochemistry and Molecular Biology, 2016, 70, 60-72.	2.7	43
67	Juvenile hormone differentially regulates two Grp78 genes encoding protein chaperones required for insect fat body cell homeostasis and vitellogenesis. Journal of Biological Chemistry, 2017, 292, 8823-8834.	3.4	43
68	Effect of cooling rates on the cold hardiness and cryoprotectant profiles of locust eggs. Cryobiology, 2005, 51, 220-229.	0.7	42
69	Long-read direct RNA sequencing by 5'-Cap capturing reveals the impact of Piwi on the widespread exonization of transposable elements in locusts. RNA Biology, 2019, 16, 950-959.	3.1	42
70	Elevated CO ₂ changes the interactions between nematode and tomato genotypes differing in the JA pathway. Plant, Cell and Environment, 2010, 33, 729-739.	5.7	41
71	MicroRNAâ€dependent development revealed by RNA interferenceâ€mediated gene silencing of <i>LmDicer1</i> in the migratory locust. Insect Science, 2013, 20, 53-60.	3.0	40
72	The mitochondrial genome of the Russian wheat aphid Diuraphis noxia: Large repetitive sequences between trnE and trnF in aphids. Gene, 2014, 533, 253-260.	2.2	40

#	Article	IF	CITATIONS
73	Phenylacetonitrile in locusts facilitates an antipredator defense by acting as an olfactory aposematic signal and cyanide precursor. Science Advances, 2019, 5, eaav5495.	10.3	40
74	Argonaute 1 is indispensable for juvenile hormone mediated oogenesis in the migratory locust, Locusta migratoria. Insect Biochemistry and Molecular Biology, 2013, 43, 879-887.	2.7	39
75	Two dopamine receptors play different roles in phase change of the migratory locust. Frontiers in Behavioral Neuroscience, 2015, 9, 80.	2.0	39
76	Identification and characterization of insect-specific proteins by genome data analysis. BMC Genomics, 2007, 8, 93.	2.8	38
77	Elevated CO ₂ shifts the focus of tobacco plant defences from cucumber mosaic virus to the green peach aphid. Plant, Cell and Environment, 2010, 33, 2056-2064.	5.7	37
78	Verbenone interrupts attraction to host volatiles and reduces attack on <i>Pinus tabuliformis</i> (Pinaceae) by <i>Dendroctonus valens</i> (Coleoptera: Scolytidae) in the People's Republic of China. Canadian Entomologist, 2003, 135, 721-732.	0.8	36
79	Serotonin enhances solitariness in phase transition of the migratory locust. Frontiers in Behavioral Neuroscience, 2013, 7, 129.	2.0	36
80	The neuropeptide F/nitric oxide pathway is essential for shaping locomotor plasticity underlying locust phase transition. ELife, 2017, 6, .	6.0	36
81	An isoform of Taiman that contains a PRD-repeat motif is indispensable for transducing the vitellogenic juvenile hormone signal in Locusta migratoria. Insect Biochemistry and Molecular Biology, 2017, 82, 31-40.	2.7	35
82	Paternal epigenetic effects of population density on locust phaseâ€related characteristics associated with heatâ€shock protein expression. Molecular Ecology, 2015, 24, 851-862.	3.9	34
83	Strip cropping wheat and alfalfa to improve the biological control of the wheat aphid Macrosiphum avenae by the mite Allothrombium ovatum. Agriculture, Ecosystems and Environment, 2007, 119, 49-52.	5.3	32
84	Antagonism between herbivoreâ€induced plant volatiles and trichomes affects tritrophic interactions. Plant, Cell and Environment, 2013, 36, 315-327.	5.7	32
85	Composition and emission dynamics of migratory locust volatiles in response to changes in developmental stages and population density. Insect Science, 2017, 24, 60-72.	3.0	32
86	Role of plant volatiles in host plant location of the leafminer, Liriomyza sativae (Diptera:) Tj ETQq0 0 0 rgBT /Ov	erlock 10 T	f 5 <u>9</u> 222 Td (
87	Evidence for the expression of abundant microRNAs in the locust genome. Scientific Reports, 2015, 5, 13608.	3.3	31
88	Identification of Odorant-Binding Proteins (OBPs) and Functional Analysis of Phase-Related OBPs in the Migratory Locust. Frontiers in Physiology, 2018, 9, 984.	2.8	31
89	A β-carotene-binding protein carrying a red pigment regulates body-color transition between green and black in locusts. ELife, 2019, 8, .	6.0	31
90	Antennal sensilla of grasshoppers (Orthoptera: Acrididae) in relation to food preferences and habits. Journal of Biosciences, 2003, 28, 743-752.	1.1	30

#	Article	IF	CITATIONS
91	Are color or high rearing density related to migratory polyphenism in the band-winged grasshopper, Oedaleus asiaticus?. Journal of Insect Physiology, 2010, 56, 926-936.	2.0	30
92	Large-Scale Transcriptome Analysis of Retroelements in the Migratory Locust, Locusta migratoria. PLoS ONE, 2012, 7, e40532.	2.5	30
93	Testing biodiversity-ecosystem functioning relationship in the world's largest grassland: overview of the IMGRE project. Landscape Ecology, 2015, 30, 1723-1736.	4.2	30
94	Landscape level patterns of grasshopper communities in Inner Mongolia: interactive effects of livestock grazing and a precipitation gradient. Landscape Ecology, 2015, 30, 1657-1668.	4.2	30
95	Nutritional imbalance suppresses migratory phenotypes of the Mongolian locust (<i>Oedaleus) Tj ETQq1 1 0.78</i>	4314 rgBT 2.4	/gyerlock 1(
96	Efficient utilization of aerobic metabolism helps Tibetan locusts conquer hypoxia. BMC Genomics, 2013, 14, 631.	2.8	29
97	Cold hardiness as a factor for assessing the potential distribution of the Japanese pine sawyerMonochamus alternatus(Coleoptera: Cerambycidae) in China. Annals of Forest Science, 2006, 63, 449-456.	2.0	28
98	Core transcriptional signatures of phase change in the migratory locust. Protein and Cell, 2019, 10, 883-901.	11.0	28
99	CRISPR/Cas9-mediated genome editing induces exon skipping by complete or stochastic altering splicing in the migratory locust. BMC Biotechnology, 2018, 18, 60.	3.3	27
100	Effect of influent feeding pattern on municipal tailwater treatment during a sulfur-based denitrification constructed wetland. Bioresource Technology, 2020, 315, 123807.	9.6	27
101	Implication of pupal cold tolerance for the northern over-wintering range limit of the leafminer Liriomyza sativae (Diptera: Agromyzidae) in China. Applied Entomology and Zoology, 2005, 40, 437-446.	1.2	26
102	Supercooling capacity and cold hardiness of the eggs of the grasshopper Chorthippus fallax (Orthoptera: Acrididae). European Journal of Entomology, 2004, 101, 231-236.	1.2	26
103	Isolation, characterization and cross-species amplification of eight microsatellite DNA loci in the migratory locust (Locusta migratoria). Molecular Ecology Notes, 2003, 3, 483-486.	1.7	25
104	Structural characterization and transcriptional regulation of the gene encoding diapause hormone and pheromone biosynthesis activating neuropeptide in the cotton bollworm, Helicoverpa armigera. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2005, 1728, 44-52.	2.4	25
105	Influence of soil moisture on egg cold hardiness in the migratory locust Locusta migratoria (Orthoptera: Acridiidae). Physiological Entomology, 2007, 32, 219-224.	1.5	25
106	Locust density shapes energy metabolism and oxidative stress resulting in divergence of flight traits. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	25
107	Interactive effect of photoperiod and temperature on the induction and termination of embryonic diapause in the migratory locust. Pest Management Science, 2021, 77, 2854-2862.	3.4	24
108	Seasonal Variation in Cold-Hardiness of the Japanese Pine SawyerMonochamus alternatus(Coleoptera:) Tj ETQqC	001gBT/	Overlock 10

#	Article	IF	CITATIONS
109	Laboratory Populations as a Resource for Understanding the Relationship Between Genotypes and Phenotypes. Advances in Insect Physiology, 2010, , 1-37.	2.7	23
110	Proteomic analysis reveals that COP9 signalosome complex subunit 7A (CSN7A) is essential for the phase transition of migratory locust. Scientific Reports, 2015, 5, 12542.	3.3	23
111	Chill injury in the eggs of the migratory locust, Locusta migratoria (Orthoptera: Acrididae): the time-temperature relationship with high-temperature interruption. Insect Science, 2005, 12, 171-178.	3.0	22
112	Performances of survival, feeding behavior and gene expression in aphids reveal their different fitness to host alteration. Scientific Reports, 2016, 6, 19344.	3.3	22
113	Juvenile hormone suppresses aggregation behavior through influencing antennal gene expression in locusts. PLoS Genetics, 2020, 16, e1008762.	3.5	21
114	Functional Synchronization of Biological Rhythms in a Tritrophic System. PLoS ONE, 2010, 5, e11064.	2.5	21
115	Postdiapause Development and Hatching Rate of Three Grasshopper Species (Orthoptera: Acrididae) in Inner Mongolia. Environmental Entomology, 2004, 33, 1528-1534.	1.4	20
116	Seasonal Changes in the Cold Tolerance of Eggs of the Migratory Locust, <i>Locusta migratoria</i> L. (Orthoptera: Acrididae). Environmental Entomology, 2004, 33, 113-118.	1.4	20
117	Diet factors responsible for the change of the glucose oxidase activity in labial salivary glands of <i>Helicoverpa armigera</i> . Archives of Insect Biochemistry and Physiology, 2008, 68, 113-121.	1.5	20
118	A Symbiotic Virus Facilitates Aphid Adaptation to Host Plants by Suppressing Jasmonic Acid Responses. Molecular Plant-Microbe Interactions, 2020, 33, 55-65.	2.6	20
119	Long noncoding RNA PAHAL modulates locust behavioural plasticity through the feedback regulation of dopamine biosynthesis. PLoS Genetics, 2020, 16, e1008771.	3.5	20
120	Tryptamine accumulation caused by deletion of MrMao-1ÂinÂMetarhiziumÂgenome significantly enhances insecticidal virulence. PLoS Genetics, 2020, 16, e1008675.	3.5	20
121	Evolution of Hsp70 Gene Expression: A Role for Changes in AT-Richness within Promoters. PLoS ONE, 2011, 6, e20308.	2.5	20
122	DYNAMICS OF GRASSHOPPER COMMUNITIES UNDER DIFFERENT GRAZING INTENSITIES IN INNER MONGOLIAN STEPPES. Insect Science, 1995, 2, 265-281.	3.0	19
123	The compact mitochondrial genome of Zorotypus medoensis provides insights into phylogenetic position of Zoraptera. BMC Genomics, 2014, 15, 1156.	2.8	19
124	Comparative genomic analysis of SET domain family reveals the origin, expansion, and putative function of the arthropod-specific SmydA genes as histone modifiers in insects. GigaScience, 2017, 6, 1-16.	6.4	19
125	Genomic variations in the 3′â€ŧermini of <i>Rice stripe virus</i> in the rotation between vector insect and host plant. New Phytologist, 2018, 219, 1085-1096.	7.3	19
126	Regulatory Mechanisms of Cell Polyploidy in Insects. Frontiers in Cell and Developmental Biology, 2020, 8, 361.	3.7	19

#	Article	IF	CITATIONS
127	Neuropeptide ACP facilitates lipid oxidation and utilization during long-term flight in locusts. ELife, 2021, 10, .	6.0	19
128	A Plant Virus Ensures Viral Stability in the Hemolymph of Vector Insects through Suppressing Prophenoloxidase Activation. MBio, 2020, 11, .	4.1	18
129	On the origin of SARS-CoV-2—The blind watchmaker argument. Science China Life Sciences, 2021, 64, 1560-1563.	4.9	18
130	CREB-B acts as a key mediator of NPF/NO pathway involved in phase-related locomotor plasticity in locusts. PLoS Genetics, 2019, 15, e1008176.	3.5	17
131	Cold hardiness and supercooling capacity in the pea leafminer Liriomyza huidobrensis. Cryo-Letters, 2002, 23, 173-82.	0.3	17
132	The Structural Adaptation of Mandibles and Food Specificity in Grasshoppers on Inner Mongolian Grasslands. , 1999, , 257.		16
133	Operational Sex Ratio and Alternative Reproductive Behaviours in Chinese Bushcricket, Gampsocleis gratiosa. Ethology, 2006, 112, 325-331.	1.1	16
134	Parental phase status affects the cold hardiness of progeny eggs in locusts. Functional Ecology, 2012, 26, 379-389.	3.6	16
135	Transcriptional Analysis of Arabidopsis thaliana Response to Lima Bean Volatiles. PLoS ONE, 2012, 7, e35867.	2.5	16
136	The role of plant odours in the leafminer Liriomyza sativae (Diptera: Agromyzidae) and its parasitoid Diglyphus isaea (Hymenoptera: Eulophidae): Orientation towards the host habitat. European Journal of Entomology, 2002, 99, 445-450.	1.2	16
137	Syntaxin 1A modulates the sexual maturity rate and progeny egg size related to phase changes in locusts. Insect Biochemistry and Molecular Biology, 2015, 56, 1-8.	2.7	15
138	Characteristics and expression patterns of histone-modifying enzyme systems in the migratory locust. Insect Biochemistry and Molecular Biology, 2016, 76, 18-28.	2.7	15
139	Rapid cold hardening in young hoppers of the migratory locust Locusta migratoria L. (Orthoptera:) Tj ETQq1 1 0.	.784314 r 0.3	gBT /Overloci
140	Studies on the tribe Meconematini (Orthoptera: Tettigoniidae: Meconematinae) from China. Oriental Insects, 2005, 39, 63-87.	0.3	14
141	Genome-wide analysis of transcriptional changes in the thoracic muscle of the migratory locust, Locusta migratoria, exposed to hypobaric hypoxia. Journal of Insect Physiology, 2012, 58, 1424-1431.	2.0	14
142	Mosquito Diversity and Population Genetic Structure of Six Mosquito Species From Hainan Island. Frontiers in Genetics, 2020, 11, 602863.	2.3	14
143	Feeding of pea leafminer larvae simultaneously activates jasmonic and salicylic acid pathways in plants to release a terpenoid for indirect defense. Insect Science, 2021, 28, 811-824.	3.0	13
144	Specificity Responses of Grasshoppers in Temperate Grasslands to Diel Asymmetric Warming. PLoS ONE, 2012, 7, e41764.	2.5	13

#	Article	IF	CITATIONS
145	Field trials of potential attractants and inhibitors for pine shoot beetles in the Yunnan province, China. Annals of Forest Science, 2005, 62, 9-12.	2.0	12
146	Genetic divergence among geographical populations of the migratory locust in China. Science in China Series C: Life Sciences, 2005, 48, 551.	1.3	12
147	CHARACTERIZATION OF GLUCOSEâ€INDUCED GLUCOSE OXIDASE GENE AND PROTEIN EXPRESSION IN <i><scp>H</scp>elicoverpa armigera</i> LARVAE. Archives of Insect Biochemistry and Physiology, 2012, 79, 104-119.	1.5	12
148	Largeâ€scale gene expression reveals different adaptations of <i>Hyalopterus persikonus</i> to winter and summer host plants. Insect Science, 2017, 24, 431-442.	3.0	12
149	Female adult puncture-induced plant volatiles promote mating success of the pea leafminer via enhancing vibrational signals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180318.	4.0	12
150	Long Non-coding RNA Derived from IncRNA–mRNA Co-expression Networks Modulates the Locust Phase Change. Genomics, Proteomics and Bioinformatics, 2020, 18, 664-678.	6.9	12
151	The nucleocapsid protein of rice stripe virus in cell nuclei of vector insect regulates viral replication. Protein and Cell, 2022, 13, 360-378.	11.0	12
152	A novel rapid sampling method for pinewood nematode, <i>Bursaphelenchus xylophilus</i> (Nematoda: Parasitaphelenchidae). Canadian Journal of Forest Research, 2007, 37, 1867-1872.	1.7	11
153	Polymorphism and Methylation of Four Genes Expressed in Salivary Glands of Russian Wheat Aphid (Homoptera: Aphididae). Journal of Economic Entomology, 2012, 105, 232-241.	1.8	11
154	Identification of conditionâ€specific reference genes from microarray data for locusts exposed to hypobaric hypoxia. FEBS Open Bio, 2012, 2, 235-240.	2.3	11
155	Genomic data reveal high conservation but divergent evolutionary pattern of Polycomb/Trithorax group genes in arthropods. Insect Science, 2019, 26, 20-34.	3.0	11
156	MULTIDIMENSIONAL ANALYSIS OF RESOURCE UTILIZATION IN ASSEMBLAGES OF RANGELAND GRASSHOPPERS (ORTHOPTERA: ACRIDIDAE). Insect Science, 1994, 1, 264-282.	3.0	10
157	Behavioral and olfactory responses of grasshopper hatchlings, Melanoplus sanguinipes, to plant odours and volatile compounds. Science Bulletin, 2004, 49, 136.	1.7	10
158	Pea leafminerLiriomyza huidobrensis(Diptera: Agromyzidae) uses vibrational duets for efficient sexual communication. Insect Science, 2019, 26, 510-522.	3.0	10
159	Aggregation pheromone 4-vinylanisole promotes the synchrony of sexual maturation in female locusts. ELife, 2022, 11, .	6.0	10
160	Can greenhouses eliminate the development of cold resistance of the leafminers?. Oecologia, 2005, 144, 187-195.	2.0	9
161	EGG-HATCHING BENEFITS GAINED BY POLYANDROUS FEMALE LOCUSTS ARE NOT DUE TO THE FERTILIZATION ADVANTAGE OF NONSIBLING MALES. Evolution; International Journal of Organic Evolution, 2007, 61, 470-476.	2.3	9

162 The Responses of Insects to Global Warming. , 2011, , 201-212.

#	Article	IF	CITATIONS
163	The fate of triclocarban in activated sludge and its influence on biological wastewater treatment system. Journal of Environmental Management, 2020, 276, 111237.	7.8	9
164	Characterization of protein–protein interactions between rice viruses and vector insects. Insect Science, 2021, 28, 976-986.	3.0	9
165	Effects of Soil Temperature and Moisture on the Development and Survival of Grasshopper Eggs in Inner Mongolian Grasslands. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	9
166	Comparison of the olfactory sensitivity of two sympatric steppe grasshopper species (Orthoptera:) Tj ETQq0 0 0	rgBT /Ove 1.3	rlock 10 Tf 50
	Revision of the genusSinochloraTinkham (Orthontera: Tettigoniidae, Phaneropterinae), Journal of		

167	Natural History, 2007, 41, 1313-1341.	0.5	8
168	Anoxic stress and rapid cold hardening enhance cold tolerance of the migratory locust. Cryobiology, 2014, 69, 243-248.	0.7	8
169	High expression of a unique aphid protein in the salivary glands of Acyrthosiphon pisum. Physiological and Molecular Plant Pathology, 2015, 92, 175-180.	2.5	8
170	Overview: biotic signalling for smart pest management. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180306.	4.0	8
171	Special Significance of Non-Drosophila Insects in Aging. Frontiers in Cell and Developmental Biology, 2020, 8, 576571.	3.7	8
172	Coordination between terminal variation of the viral genome and insect microRNAs regulates rice stripe virus replication in insect vectors. PLoS Pathogens, 2021, 17, e1009424.	4.7	8
173	Alternative splicing level related to intron size and organism complexity. BMC Genomics, 2021, 22, 853.	2.8	8
174	Microsatellites reveal the genetic structure of thelytokous strains of the migratory locust. Insect Science, 2007, 14, 193-199.	3.0	7
175	Transcriptome response analysis of Arabidopsis thaliana to leafminer (Liriomyza huidobrensis). BMC Plant Biology, 2012, 12, 234.	3.6	7
176	Phase-related differences in egg production of the migratory locust regulated by differential oosorption through microRNA-34 targeting activinβ. PLoS Genetics, 2021, 17, e1009174.	3.5	7
177	Piwi/piRNAs control food intake by promoting neuropeptide F expression in locusts. EMBO Reports, 2022, 23, e50851.	4.5	7
178	Rapid cold hardening process of insects and its ecologically adaptive significance *. Progress in Natural Science: Materials International, 2003, 13, 641-647.	4.4	6
179	Transposable Element-Mediated Balancing Selection at <i>Hsp90</i> Underlies Embryo Developmental Variation. Molecular Biology and Evolution, 2017, 34, msx062.	8.9	6
180	Complete Genome Sequence of Weissella confusa LM1 and Comparative Genomic Analysis. Frontiers in Microbiology, 2021, 12, 749218.	3.5	6

#	Article	IF	CITATIONS
181	DNA methyltransferase 3 participates in behavioral phase change in the migratory locust. Insect Biochemistry and Molecular Biology, 2020, 121, 103374.	2.7	5
182	Aging features of the migratory locust at physiological and transcriptional levels. BMC Genomics, 2021, 22, 257.	2.8	5
183	FAWMine: An integrated database and analysis platform for fall armyworm genomics. Insect Science, 2021, 28, 590-601.	3.0	5
184	Variation of TNF modulates cellular immunity of gregarious and solitary locusts against fungal pathogen <i>Metarhizium anisopliae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	5
185	Hexamerin-2 Protein of Locust as a Novel Allergen in Occupational Allergy. Journal of Asthma and Allergy, 2022, Volume 15, 145-155.	3.4	5
186	OLFACTORY RESPONSE OF THE GRASSHOPPER MELANOPLUS SANGUINIPES TO PLANT ODOURS AND VOLATILE COMPOUNDS. Insect Science, 1995, 2, 136-144.	3.0	4
187	JumpDetector: An automated monitoring equipment for the locomotion of jumping insects. Insect Science, 2020, 27, 613-624.	3.0	4
188	Sulfation modification of dopamine in brain regulates aggregative behavior of animals. National Science Review, 2022, 9, nwab163.	9.5	4
189	A <i>Gypsy</i> element contributes to the nuclear retention and transcriptional regulation of the resident lncRNA in locusts. RNA Biology, 2022, 19, 206-220.	3.1	4
190	Rice Responses and Resistance to Planthopper-Borne Viruses at Transcriptomic and Proteomic Levels. Current Issues in Molecular Biology, 2016, 19, 43-52.	2.4	4
191	piRNA-guided intron removal from pre-mRNAs regulates density-dependent reproductive strategy. Cell Reports, 2022, 39, 110593.	6.4	4
192	RECTIMARGINALIS, NEW GENUS, WITH KEY TO GENERA OF HOLOCHLORINI (ORTHOPTERA: TETTIGONIIDAE:) TJ I	ETQ <u>q</u> 0000	rgBT /Overlo
193	The genus Tapiena BolÃvar (Orthoptera: Tettigoniidae: Phaneropterinae; Holochlorini), with description of three new species from China. Zootaxa, 2010, 2328, 49.	0.5	3
194	Hymenopteran Parasitoids and Their Role in Biological Control of Vegetable Liriomyza Leafminers. , 2011, , 376-403.		3
195	Manipulation of biotic signaling: a new theory for smarter pest control. Science China Life Sciences, 2017, 60, 781-784.	4.9	3
196	Sexual cooperation relies on food controlled by females in agromyzid flies. Animal Behaviour, 2019, 149, 55-63.	1.9	3
197	Transcription initiation of distant core promoters in a large-sized genome of an insect. BMC Biology, 2021, 19, 62.	3.8	3
198	A review of the genus <i>Parapsyra</i> Carl (Orthoptera: Tettigoniidae: Phaneropterinae), with	0.3	2

A review of the genus <i>Parapsyra</i> Carl (Orthoptera: Tettigoniidae: Phaneropterinae), with descriptions of three new species from China. Oriental Insects, 2006, 40, 219-230.

#	Article	IF	CITATIONS
199	Review of the genus Holochlora Stål (Orthoptera, Tettigoniidae, Phaneropterinae) from China. Mitteilungen Aus Dem Museum Fur Naturkunde in Berlin - Deutsche Entomologische Zeitschrift, 2008, 55, 223-240.	0.8	2
200	Father of biological cloning in China. Protein and Cell, 2010, 1, 793-794.	11.0	2
201	Optical coherence tomography as a noninvasive 3D real time imaging tool for the rapid evaluation of phenotypic variations in insect embryonic development. Journal of Biophotonics, 2020, 13, e201960047.	2.3	2
202	Transformation of glycerate kinase (<scp>GLYK</scp>) into <i>Metarhizium acridum</i> increases virulence to locust. Pest Management Science, 2021, 77, 1465-1475.	3.4	2
203	A novel nonâ€invasive identification of genome editing mutants from insect exuviae. Insect Science, 2022, 29, 21-32.	3.0	2
204	Isolation of Rice Stripe Virus Preparation from Viruliferous Small Brown Planthoppers and Mechanic Inoculation on Rice. Bio-protocol, 2017, 7, e2597.	0.4	2
205	Two new species of <i>Hemigyrus</i> Brunner von Wattenwyl (Orthoptera: Tettigoniidae:) Tj ETQq1 1 0.784314	t rgBT /Ονε 0.3	erlock 10 Tf 5
206	Cold tolerance and cold hardening strategy of the Japanese pine sawyer <i>Monochamus alternatus</i> (Coleoptera: Cerambycidae). Insect Science, 2008, 15, 307-316.	3.0	1
207	Announcing web-based submission and peer review processes: ScholarOne Manuscripts. Insect Science, 2009, 16, 441-442.	3.0	1
208	Bing Zhi: pioneer of modern biology in China. Protein and Cell, 2010, 1, 613-615.	11.0	1
209	The 1956 Qingdao Meeting on Genetics: an important turning point of Chinese biology. Protein and Cell, 2011, 2, 5-6.	11.0	1
210	Xiangtong Zhang's study on dendritic function: Gold is shining everywhere. Protein and Cell, 2011, 2, 264-265.	11.0	1
211	Structural and functional differentiation of a fat body-like tissue adhering to testis follicles facilitates spermatogenesis in locusts. Insect Biochemistry and Molecular Biology, 2019, 113, 103207.	2.7	1
212	Embryonic Development of Grasshopper Populations Along Latitudinal Gradients Reveal Differential Thermoaccumulation for Adaptation to Climate Warming. Frontiers in Ecology and Evolution, 2021, 9,	2.2	1
213	Commitment and dedication of a Chinese plant physiologist. Protein and Cell, 2010, 1, 886-887.	11.0	0
214	Zongluo Luo, a Chinese Haigui in 1930s. Protein and Cell, 2010, 1, 972-973.	11.0	0
215	An unforgettable debate between descriptive and experimental biology in the 1930s in China. Protein and Cell, 2010, 1, 1053-1055.	11.0	0
216	Shijun Ma: keeping on exploring new areas to meet the challenge of human and social demands. Protein and Cell, 2011, 2, 90-91.	11.0	0

#	Article	IF	CITATIONS
217	Janus Kinase Mediates Faster Recovery From Sevoflurane Anesthesia Than Isoflurane Anesthesia in the Migratory Locusts. Frontiers in Physiology, 2022, 13, 806746.	2.8	0
218	Noninvasive examination of the cardiac properties of insect embryos enabled by optical coherence tomography. Journal of Biophotonics, 2022, , e202100308.	2.3	0
219	Title is missing!. , 2020, 16, e1008675.		0
220	Title is missing!. , 2020, 16, e1008675.		0
221	Title is missing!. , 2020, 16, e1008675.		0
222	Title is missing!. , 2020, 16, e1008675.		0
223	Title is missing!. , 2020, 16, e1008675.		0
224	Title is missing!. , 2020, 16, e1008675.		0
225	Title is missing!. , 2020, 16, e1008771.		0
226	Title is missing!. , 2020, 16, e1008771.		0
227	Title is missing!. , 2020, 16, e1008771.		0
228	Title is missing!. , 2020, 16, e1008771.		0
229	Title is missing!. , 2020, 16, e1008771.		0

230 Title is missing!. , 2020, 16, e1008771.