Nathalie Giglioli-Guivarc'h

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9221755/publications.pdf

Version: 2024-02-01

82 papers

2,795 citations

30 h-index 206112 48 g-index

82 all docs 82 docs citations

times ranked

82

2783 citing authors

#	Article	IF	Citations
1	Comparative evaluation of chemically and green synthesized zinc oxide nanoparticles: their in vitro antioxidant, antimicrobial, cytotoxic and anticancer potential towards HepG2 cell line. Journal of Nanostructure in Chemistry, 2023, 13, 243-261.	9.1	11
2	Potential antimicrobial, antidiabetic, catalytic, antioxidant and ROS/RNS inhibitory activities of <i>Silybum marianum</i> mediated biosynthesized copper oxide nanoparticles. RSC Advances, 2022, 12, 14069-14083.	3.6	19
3	Identifying Major Drivers of Antioxidant Activities in Complex Polyphenol Mixtures from Grape Canes. Molecules, 2022, 27, 4029.	3.8	6
4	Exploiting Spermidine <i>N</i> -Hydroxycinnamoyltransferase Diversity and Substrate Promiscuity to Produce Various Trihydroxycinnamoyl Spermidines and Analogues in Engineered Yeast. ACS Synthetic Biology, 2021, 10, 286-296.	3.8	6
5	Optimization of Tabersonine Methoxylation to Increase Vindoline Precursor Synthesis in Yeast Cell Factories. Molecules, 2021, 26, 3596.	3.8	10
6	Scarlet Flax Linum grandiflorum (L.) In Vitro Cultures as a New Source of Antioxidant and Anti-Inflammatory Lignans. Molecules, 2021, 26, 4511.	3.8	6
7	Enhanced bioproduction of anticancer precursor vindoline by yeast cell factories. Microbial Biotechnology, 2021, 14, 2693-2699.	4.2	24
8	Protein Farnesylation Takes Part in Arabidopsis Seed Development. Frontiers in Plant Science, 2021, 12, 620325.	3.6	5
9	Alternative splicing creates a pseudo-strictosidine \hat{l}^2 - <scp>d</scp> -glucosidase modulating alkaloid synthesis in <i>Catharanthus roseus</i> . Plant Physiology, 2021, 185, 836-856.	4.8	19
10	Identifying Genes Involved in Alkaloid Biosynthesis in Vinca minor through Transcriptomics and Gene Co-Expression Analysis. Biomolecules, 2020, 10, 1595.	4.0	12
11	UPLC-HRMS Analysis Revealed the Differential Accumulation of Antioxidant and Anti-Aging Lignans and Neolignans in In Vitro Cultures of Linum usitatissimum L. Frontiers in Plant Science, 2020, 11, 508658.	3.6	10
12	Grape Cane Extracts as Multifunctional Rejuvenating Cosmetic Ingredient: Evaluation of Sirtuin Activity, Tyrosinase Inhibition and Bioavailability Potential. Molecules, 2020, 25, 2203.	3.8	27
13	Effects of Biogenic Zinc Oxide Nanoparticles on Growth and Oxidative Stress Response in Flax Seedlings vs. In Vitro Cultures: A Comparative Analysis. Biomolecules, 2020, 10, 918.	4.0	35
14	Synthesis of bio-mediated silver nanoparticles from Silybum marianum and their biological and clinical activities. Materials Science and Engineering C, 2020, 112, 110889.	7.3	79
15	Cellular and Subcellular Compartmentation of the 2C-Methyl-D-Erythritol 4-Phosphate Pathway in the Madagascar Periwinkle. Plants, 2020, 9, 462.	3.5	19
16	A Biolistic-Mediated Virus-Induced Gene Silencing in Apocynaceae to Map Biosynthetic Pathways of Alkaloids. Methods in Molecular Biology, 2020, 2172, 93-110.	0.9	1
17	Differential Production of Phenylpropanoid Metabolites in Callus Cultures of <i>Ocimum basilicum</i> L. with Distinct <i>In Vitro</i> Antioxidant Activities and <i>In Vivo</i> Protective Effects against UV stress. Journal of Agricultural and Food Chemistry, 2019, 67, 1847-1859.	5.2	78
18	Biogenic zinc oxide nanoparticles-enhanced biosynthesis of lignans and neolignans in cell suspension cultures of Linum usitatissimum L. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 1367-1373.	2.8	30

#	Article	IF	CITATIONS
19	Interactive Effects of Light and Melatonin on Biosynthesis of Silymarin and Anti-Inflammatory Potential in Callus Cultures of Silybum marianum (L.) Gaertn Molecules, 2019, 24, 1207.	3.8	33
20	Isodon rugosus (Wall. ex Benth.) Codd In Vitro Cultures: Establishment, Phytochemical Characterization and In Vitro Antioxidant and Anti-Aging Activities. International Journal of Molecular Sciences, 2019, 20, 452.	4.1	28
21	Chemogenic silver nanoparticles enhance lignans and neolignans in cell suspension cultures of Linum usitatissimum L Plant Cell, Tissue and Organ Culture, 2019, 136, 589-596.	2.3	37
22	Setting-up a fast and reliable cytokinin biosensor based on a plant histidine kinase receptor expressed in Saccharomyces cerevisiae. Journal of Biotechnology, 2019, 289, 103-111.	3.8	7
23	Genome-wide identification and biochemical characterization of the UGT88F subfamily in Malus x domestica Borkh. Phytochemistry, 2019, 157, 135-144.	2.9	10
24	Vineyard evaluation of stilbenoidâ€ich grape cane extracts against downy mildew: a largeâ€scale study. Pest Management Science, 2019, 75, 1252-1257.	3.4	25
25	A $\langle scp \rangle$ BAHD $\langle scp \rangle$ acyltransferase catalyzing $19\hat{a} \in \langle i \rangle$ O $\langle i \rangle \hat{a} \in a$ cetylation of tabersonine derivatives in roots of $\langle i \rangle$ Catharanthus roseus $\langle i \rangle$ enables combinatorial synthesis of monoterpene indole alkaloids. Plant Journal, 2018, 94, 469-484.	5.7	46
26	A synthetic construct for genetic engineering of the emerging pathogenic yeast Candida auris. Plasmid, 2018, 95, 7-10.	1.4	8
27	A standardized toolkit for genetic engineering of CTG clade yeasts. Journal of Microbiological Methods, 2018, 144, 152-156.	1.6	19
28	Mechanical stress rapidly induces E-resveratrol and E-piceatannol biosynthesis in grape canes stored as a freshly-pruned byproduct. Food Chemistry, 2018, 240, 1022-1027.	8.2	40
29	Differential accumulation of silymarin induced by exposure of Silybum marianum L. callus cultures to several spectres of monochromatic lights. Journal of Photochemistry and Photobiology B: Biology, 2018, 184, 61-70.	3.8	39
30	Two Tabersonine 6,7-Epoxidases Initiate Lochnericine-Derived Alkaloid Biosynthesis in Catharanthus roseus. Plant Physiology, 2018, 177, 1473-1486.	4.8	34
31	Field-Based Metabolomics of Vitis vinifera L. Stems Provides New Insights for Genotype Discrimination and Polyphenol Metabolism Structuring. Frontiers in Plant Science, 2018, 9, 798.	3.6	41
32	Ranking genome-wide correlation measurements improves microarray and RNA-seq based global and targeted co-expression networks. Scientific Reports, 2018, 8, 10885.	3.3	73
33	Mechanistic evaluation of phytochemicals in breast cancer remedy: current understanding and future perspectives. RSC Advances, 2018, 8, 29714-29744.	3.6	55
34	In vitro cultures of Linum usitatissimum L.: Synergistic effects of mineral nutrients and photoperiod regimes on growth and biosynthesis of lignans and neolignans. Journal of Photochemistry and Photobiology B: Biology, 2018, 187, 141-150.	3.8	20
35	Yeast-extract improved biosynthesis of lignans and neolignans in cell suspension cultures of Linum usitatissimum L Plant Cell, Tissue and Organ Culture, 2018, 135, 347-355.	2.3	25
36	Vacuole-Targeted Proteins: Ins and Outs of Subcellular Localization Studies. Methods in Molecular Biology, 2018, 1789, 33-54.	0.9	4

#	Article	IF	CITATIONS
37	Virus-induced gene silencing in Rauwolfia species. Protoplasma, 2017, 254, 1813-1818.	2.1	15
38	Group X hybrid histidine kinase Chk1 is dispensable for stress adaptation, host–pathogen interactions and virulence in the opportunistic yeast Candida guilliermondii. Research in Microbiology, 2017, 168, 644-654.	2.1	8
39	Virus-induced gene silencing of the two squalene synthase isoforms of apple tree (MalusÂ×Âdomestica) Tj ETQ 45-60.	q1 1 0.784 3.2	1314 rgBT O
40	Remarkable Evolutionary Conservation of Antiobesity ADIPOSE/WDTC1 Homologs in Animals and Plants. Genetics, 2017, 207, 153-162.	2.9	12
41	CHASE-Containing Histidine Kinase Receptors in Apple Tree: From a Common Receptor Structure to Divergent Cytokinin Binding Properties and Specific Functions. Frontiers in Plant Science, 2017, 8, 1614.	3.6	27
42	Class II Cytochrome P450 Reductase Governs the Biosynthesis of Alkaloids. Plant Physiology, 2016, 172, 1563-1577.	4.8	44
43	An additionalMeyerozyma guilliermondii IMH3gene confers mycophenolic acid resistance in fungal CTG clade species. FEMS Yeast Research, 2016, 16, fow078.	2.3	5
44	ASG2 is a farnesylated DWD protein that acts as ABA negative regulator in $\langle i \rangle$ Arabidopsis $\langle i \rangle$. Plant, Cell and Environment, 2016, 39, 185-198.	5.7	32
45	Hybrid histidine kinases in pathogenic fungi. Molecular Microbiology, 2015, 95, 914-924.	2.5	68
46	Biosynthetic Origin of <i>E</i> -Resveratrol Accumulation in Grape Canes during Postharvest Storage. Journal of Agricultural and Food Chemistry, 2015, 63, 1631-1638.	5.2	59
47	Composition and Tissue-Specific Distribution of Stilbenoids in Grape Canes Are Affected by Downy Mildew Pressure in the Vineyard. Journal of Agricultural and Food Chemistry, 2015, 63, 8472-8477.	5.2	26
48	Characterization of a spermidine hydroxycinnamoyltransferase in <i>Malus domestica</i> highlights the evolutionary conservation of trihydroxycinnamoyl spermidines in pollen coat of core Eudicotyledons. Journal of Experimental Botany, 2015, 66, 7271-7285.	4.8	62
49	Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome. BMC Genomics, 2015, 16, 619.	2.8	54
50	Phytochemical genomics of the Madagascar periwinkle: Unravelling the last twists of the alkaloid engine. Phytochemistry, 2015, 113, 9-23.	2.9	92
51	Subcellular localization of the histidine kinase receptors $Sln1p$, $Nik1p$ and $Chk1p$ in the yeast CTG clade species Candida guilliermondii. Fungal Genetics and Biology, 2014, 65, 25-36.	2.1	14
52	A look inside an alkaloid multisite plant: the Catharanthus logistics. Current Opinion in Plant Biology, 2014, 19, 43-50.	7.1	135
53	ZCT1 and ZCT2 transcription factors repress the activity of a gene promoter from the methyl erythritol phosphate pathway in Madagascar periwinkle cells. Journal of Plant Physiology, 2014, 171, 1510-1513.	3.5	14
54	Disrupting the methionine biosynthetic pathway in <i>Candida guilliermondii</i> : characterization of the <i>MET2</i> gene as counterâ€selectable marker. Yeast, 2014, 31, 243-251.	1.7	7

#	Article	IF	CITATIONS
55	Antifungal Activity of Resveratrol Derivatives against <i>Candida</i> Species. Journal of Natural Products, 2014, 77, 1658-1662.	3.0	67
56	A new series of vectors for constitutive, inducible or repressible gene expression in Candida guilliermondii. Journal of Biotechnology, 2014, 180, 37-42.	3.8	10
57	Transformation of Candida guilliermondiiwild-type strains using the Staphylococcus aureus MRSA 252 blegene as a phleomycin-resistant marker. FEMS Yeast Research, 2013, 13, 354-358.	2.3	13
58	Role of protein farnesylation events in the ABA-mediated regulation of the Pinoresinol–Lariciresinol Reductase 1 (LuPLR1) gene expression and lignan biosynthesis in flax (Linum usitatissimum L.). Plant Physiology and Biochemistry, 2013, 72, 96-111.	5.8	25
59	Deciphering the Evolution, Cell Biology and Regulation of Monoterpene Indole Alkaloids. Advances in Botanical Research, 2013, 68, 73-109.	1.1	22
60	Characterization of an autonomously replicating sequence in Candida guilliermondii. Microbiological Research, 2013, 168, 580-588.	5.3	16
61	Efficient gene targeting in a Candida guilliermondii non-homologous end-joining pathway-deficient strain. Biotechnology Letters, 2013, 35, 1035-1043.	2.2	21
62	Candida guilliermondii: biotechnological applications, perspectives for biological control, emerging clinical importance and recent advances in genetics. Current Genetics, 2013, 59, 73-90.	1.7	61
63	Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. Phytochemistry, 2013, 85, 36-43.	2.9	123
64	A Pair of Tabersonine 16-Hydroxylases Initiates the Synthesis of Vindoline in an Organ-Dependent Manner in <i>Catharanthus roseus</i> i>Â Â Â. Plant Physiology, 2013, 163, 1792-1803.	4.8	97
65	Triple subcellular targeting of isopentenyl diphosphate isomerases encoded by a single gene. Plant Signaling and Behavior, 2012, 7, 1495-1497.	2.4	13
66	A TRP5/5-fluoroanthranilic acid counter-selection system for gene disruption in Candida guilliermondii. Current Genetics, 2012, 58, 245-254.	1.7	15
67	Cycloheximide as a tool to investigate protein import in peroxisomes: A case study of the subcellular localization of isoprenoid biosynthetic enzymes. Journal of Plant Physiology, 2012, 169, 825-829.	3.5	7
68	Optimization of the URA-blaster disruption system in Candida guilliermondii: Efficient gene targeting using the URA3 marker. Journal of Microbiological Methods, 2012, 91, 117-120.	1.6	12
69	Molecular cloning and functional characterization of Catharanthus roseus hydroxymethylbutenyl 4-diphosphate synthase gene promoter from the methyl erythritol phosphate pathway. Molecular Biology Reports, 2012, 39, 5433-5447.	2.3	17
70	Characterization and subcellular localization of geranylgeranyl diphosphate synthase from Catharanthus roseus. Molecular Biology Reports, 2012, 39, 3235-3243.	2.3	34
71	Deus ex Candida genetics: overcoming the hurdles for the development of a molecular toolbox in the CTG clade. Microbiology (United Kingdom), 2012, 158, 585-600.	1.8	29
72	Fluorescent protein fusions in Candida guilliermondii. Fungal Genetics and Biology, 2011, 48, 1004-1011.	2.1	19

#	Article	IF	CITATIONS
73	Development of a URA5 integrative cassette for gene disruption in the Candida guilliermondii ATCC 6260 strain. Journal of Microbiological Methods, 2011, 84, 355-358.	1.6	24
74	The subcellular localization of periwinkle farnesyl diphosphate synthase provides insight into the role of peroxisome in isoprenoid biosynthesis. Journal of Plant Physiology, 2011, 168, 2110-2116.	3.5	46
75	Drug-resistant cassettes for the efficient transformation of Candida guilliermondiiâ€∫wild-type strains. FEMS Yeast Research, 2011, 11, 457-463.	2.3	30
76	Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta, 2011, 234, 903-914.	3.2	126
77	Subcellular evidence for the involvement of peroxisomes in plant isoprenoid biosynthesis. Plant Signaling and Behavior, 2011, 6, 2044-2046.	2.4	24
78	Strictosidine activation in Apocynaceae: towards a "nuclear time bomb"?. BMC Plant Biology, 2010, 10, 182.	3.6	129
79	Proteins prenylated by type I protein geranylgeranyltransferase act positively on the jasmonate signalling pathway triggering the biosynthesis of monoterpene indole alkaloids in Catharanthus roseus. Plant Cell Reports, 2009, 28, 83-93.	5.6	21
80	CaaX-prenyltransferases are essential for expression of genes involvedin the early stages of monoterpenoid biosynthetic pathwayin Catharanthus roseus cells. Plant Molecular Biology, 2005, 57, 855-870.	3.9	40
81	Isolation of a cDNA encoding the alpha-subunit of CAAX-prenyltransferases from Catharanthus roseus and the expression of the active recombinant protein farnesyltransferase. Cellular and Molecular Biology Letters, 2005, 10, 649-57.	7.0	3
82	Catharanthus roseus G-box binding factors 1 and 2 act as repressors of strictosidine synthase gene expression in cell cultures. Plant Molecular Biology, 2001, 45, 477-488.	3.9	121