
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9221551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unique stiffness-deformability features of dendrimeric silica reinforced HDPE nanocomposites obtained by an innovative route. Microporous and Mesoporous Materials, 2022, 331, 111619.	4.4	3
2	Composites of a PLA with SBA-15 mesoporous silica: Polymorphism and properties after isothermal cold crystallization. Polymer, 2022, 241, 124515.	3.8	11
3	Influence of Content in D Isomer and Incorporation of SBA-15 Silica on the Crystallization Ability and Mechanical Properties in PLLA Based Materials. Polymers, 2022, 14, 1237.	4.5	9
4	Nanocomposites of PCL and SBA-15 Particles Prepared by Extrusion: Structural Characteristics, Confinement of PCL Chains within SBA-15 Nanometric Channels and Mechanical Behavior. Polymers, 2022, 14, 129.	4.5	6
5	Effect of Graphene Nanofibers on the Morphological, Structural, Thermal, Phase Transitions and Mechanical Characteristics in Metallocene iPP Based Nanocomposites. Journal of Composites Science, 2022, 6, 161.	3.0	3
6	Microstructural details and polymorphs in poly(propylene― <i>co</i> â€lâ€nonene) copolymers synthesized at different polymerization temperatures. Polymer Crystallization, 2021, 4, .	0.8	3
7	An Effective Package of Antioxidants for Avoiding Premature Failure in Polypropylene Random Copolymer Plastic Pipes under Hydrostatic Pressure and High Temperature. Polymers, 2021, 13, 2825.	4.5	5
8	Composites of a Polypropylene Random Copolymer and Date Stone Flour: Crystalline Details and Mechanical Response. Polymers, 2021, 13, 2957.	4.5	2
9	Confinement in Extruded Nanocomposites Based on PCL and Mesoporous Silicas: Effect of Pore Sizes and Their Influence in Ultimate Mechanical Response. Journal of Composites Science, 2021, 5, 321.	3.0	5
10	Variation of Ultimate Properties in Extruded iPP-Mesoporous Silica Nanocomposites by Effect of iPP Confinement within the Mesostructures. Polymers, 2020, 12, 70.	4.5	12
11	Effect of iPP molecular weight on its confinement within mesoporous SBA-15 silica in extruded iPPâ^'SBA-15 nanocomposites. Microporous and Mesoporous Materials, 2020, 294, 109945.	4.4	6
12	Composites Based on Poly(Lactic Acid) (PLA) and SBA-15: Effect of Mesoporous Silica on Thermal Stability and on Isothermal Crystallization from Either Glass or Molten State. Polymers, 2020, 12, 2743.	4.5	14
13	Characteristics of the Non-Isothermal and Isothermal Crystallization for the Î ² Polymorph in PVDF by Fast Scanning Calorimetry. Polymers, 2020, 12, 2708.	4.5	7
14	Synchrotron and Raman Study of the Rotator Phases and Polymorphism in Tricosane Paraffin. Polymers, 2020, 12, 1341.	4.5	2
15	Identification of Additives in Polypropylene and Their Degradation under Solar Exposure Studied by Gas Chromatography–Mass Spectrometry. ACS Omega, 2020, 5, 9055-9063.	3.5	19
16	Chain Features and Their Influence on the Thermal Stability of Poly(propyleneâ€ <i>co</i> ″â€nonene) Copolymers. Macromolecular Chemistry and Physics, 2019, 220, 1900175.	2.2	0
17	Effect of thermo-oxidation on loss of plasticizers, on crystalline features and on properties in a metallocene isotactic polypropylene. Polymer, 2019, 181, 121749.	3.8	5
18	Prodegradant Additives Effect onto Comercial Polyolefins. Journal of Polymers and the Environment, 2019, 27, 464-471.	5.0	14

#	Article	IF	CITATIONS
19	A New Insight into the Comonomer Effect through NMR Analysis in Metallocene Catalysed Propene–co–1-Nonene Copolymers. Polymers, 2019, 11, 1266.	4.5	10
20	Effect of thermal treatment on the mechanical and viscoelastic response of polypropylenes incorporating a <i>\hat{l}^2</i> nucleating agent. Journal of Elastomers and Plastics, 2019, 51, 562-579.	1.5	6
21	Crystalline Characteristics and Their Influence in the Mechanical Performance in Poly(ε-Caprolactone) / High Density Polyethylene Blends. Polymers, 2019, 11, 1874.	4.5	16
22	Confinement of iPP chains in the interior of SBA-15 mesostructure ascertained by gas transport properties in iPP-SBA-15 nanocomposites prepared by extrusion. Journal of Membrane Science, 2019, 569, 137-148.	8.2	10
23	Extraordinary mechanical performance in disentangled UHMWPE films processed by compression molding. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 202-207.	3.1	11
24	Rheological analysis of irradiated crosslinkable and scissionable polymers used for medical devices under different radiation conditions. Radiation Physics and Chemistry, 2018, 144, 298-303.	2.8	6
25	Poly(propylene-co-1-pentene-co-1-heptene) terpolymers: Mechanical and rheological behavior. Polymer, 2018, 156, 44-53.	3.8	2
26	Electromagnetic interference shielding response and rheological behavior of lightweight nanocomposites based on isotactic polypropylene and Al nanoparticles. Polymer Testing, 2018, 72, 263-270.	4.8	7
27	Confinement of iPP crystallites within mesoporous SBA-15 channels in extruded iPP-SBA-15 nanocomposites studied by Small Angle X-ray scattering. Microporous and Mesoporous Materials, 2018, 272, 209-216.	4.4	18
28	Hybrid materials obtained by in situ polymerization based on polypropylene and mesoporous SBA-15 silica particles: Catalytic aspects, crystalline details and mechanical behavior. Polymer, 2018, 151, 218-230.	3.8	19
29	Effect of mesoporous SBA-15 silica on the thermal stability of isotactic polypropylene based nanocomposites prepared by melt extrusion. Polymer Degradation and Stability, 2018, 154, 211-221.	5.8	8
30	NMR study of the comonomer effect in metallocene poly(propyleneâ€ <i>co</i> â€1â€pentene) copolymers synthesized at low temperature. Journal of Polymer Science Part A, 2017, 55, 843-854.	2.3	9
31	Unprecedented dependence of stiffness parameters and crystallinity on comonomer content in rapidly cooled propylene-co-1-pentene copolymers. Polymer, 2017, 130, 17-25.	3.8	15
32	Influence of polymorphism and the new trigonal modification on the mechanical response of isotactic poly(propylene-co-1-pentene-co-1-hexene) terpolymers. European Polymer Journal, 2017, 97, 366-377.	5.4	1
33	UHMWPE/HDPE in-reactor blends, prepared by in situ polymerization: Synthetic aspects and characterization. EXPRESS Polymer Letters, 2017, 11, 344-361.	2.1	15
34	Mesophase Formation in Isotactic Polypropylene Copolymers. , 2016, , 537-559.		0
35	Mesophase features in isotactic poly(propyleneâ€ <i>co</i> â€lâ€heptene) copolymers. Polymer International, 2016, 65, 596-604.	3.1	6
36	The role of mesophases in the ordering of polymers. European Polymer Journal, 2016, 81, 661-673.	5.4	6

#	Article	IF	CITATIONS
37	Recycled Polyolefin Blends: Effect of Modified Natural Zeolite on their Properties and Morphology. Polymer-Plastics Technology and Engineering, 2016, 55, 486-497.	1.9	11
38	Trigonal δ form as a tool for tuning mechanical behavior in poly(propylene-co-1-pentene-co-1-heptene) terpolymers. Polymer, 2016, 99, 112-121.	3.8	20
39	Dependence of phase transitions on composition in isotactic poly(propylene-co-1-pentene-co-1-hexene) terpolymers. RSC Advances, 2016, 6, 82907-82915.	3.6	4
40	Water-induced structural changes in poly(lactic acid) and PLLA-clay nanocomposites. Polymer, 2016, 107, 211-222.	3.8	37
41	Hafnocene catalyst for polyethylene and its nanocomposites with SBA-15 by in situ polymerization: Immobilization approaches, catalytic behavior and properties evaluation. European Polymer Journal, 2016, 85, 298-312.	5.4	7
42	Hybrid materials based on polyethylene and MCM-41 microparticles functionalized with silanes: Catalytic aspects of in situ polymerization, crystalline features and mechanical properties. Microporous and Mesoporous Materials, 2016, 232, 86-96.	4.4	26
43	The exceptional magnetic inequivalence in helical form I of poly-1-pentene. Polymer, 2016, 92, 164-169.	3.8	Ο
44	UHMWPE/SBA-15 nanocomposites synthesized by in situ polymerization. Microporous and Mesoporous Materials, 2016, 232, 13-25.	4.4	21
45	Microstructure and thermal stability in metallocene iPP-materials: 1-pentene and 1-hexene copolymers. Polymer Degradation and Stability, 2016, 124, 77-86.	5.8	6
46	Mechanical and Transport Properties of Poly(propylene-co-1-heptene) Copolymers and Their Dependence on Monoclinic and/or Mesomorphic Polymorphs. Journal of Physical Chemistry B, 2016, 120, 1347-1356.	2.6	2
47	Characterization of Phase Structures of Novel Metalloâ€Polyurethanes. Macromolecular Chemistry and Physics, 2015, 216, 2048-2060.	2.2	16
48	Fourier Transform Infrared Spectroscopy study of polymorphism in propylene-co-1-pentene copolymers: Trigonal form identification. European Polymer Journal, 2015, 63, 227-236.	5.4	7
49	Synthesis, molecular characterization, evaluation of polymorphic behavior and indentation response in isotactic poly(propylene-co-1-heptene) copolymers. European Polymer Journal, 2015, 64, 52-61.	5.4	15
50	Fast scanning calorimetry study of the structural relaxation in a random propylene-co-1-octene copolymer. Thermochimica Acta, 2015, 603, 116-122.	2.7	9
51	Effect of copper nanoparticles incorporation on the polar beta-phase development in polyvinylidene fluoride. Materials Chemistry and Physics, 2015, 162, 794-800.	4.0	4
52	Visible and ultraviolet antibacterial behavior in PVDF–TiO2 nanocomposite films. European Polymer Journal, 2015, 71, 412-422.	5.4	19
53	Chemical modification of block copolymers based on 2-hydroxyethyl acrylate to obtain amphiphilic glycopolymers. European Polymer Journal, 2015, 62, 167-178.	5.4	11
54	Thermo and photo-oxidation of functionalized metallocene high density polyethylene: Effect of hydrophilic groups. Polymer Degradation and Stability, 2015, 111, 78-88.	5.8	36

MARIA L CERRADA

#	Article	IF	CITATIONS
55	Microstructure of metallocene isotactic propyleneâ€ <i>co</i> â€lâ€penteneâ€ <i>co</i> â€lâ€hexene terpolyme Journal of Polymer Science Part A, 2014, 52, 2537-2547.	rs. 2.3	12
56	Lightweight Nanocomposites Based on Polypropylene and Aluminum Nanoparticles and Their Shielding Capability to Ionizing Radiation. IEEE Nanotechnology Magazine, 2014, 13, 502-509.	2.0	7
57	Lightweight nanocomposites based on poly(vinylidene fluoride) and Al nanoparticles: Structural, thermal and mechanical characterization and EMI shielding capability. Materials Chemistry and Physics, 2013, 142, 469-478.	4.0	44
58	Decorated MCM-41/polyethylene hybrids: Crystalline details and viscoelastic behavior. Polymer, 2013, 54, 2611-2620.	3.8	25
59	Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: Synthesis, characterization and fundamental properties. Composites Science and Technology, 2013, 84, 1-7.	7.8	193
60	Role of TiO2 morphological characteristics in EVOH–TiO2 nanocomposite films: self-degradation and self-cleaning properties. RSC Advances, 2013, 3, 8541.	3.6	10
61	Isotactic poly(propyleneâ€ <i>co</i> â€1â€penteneâ€ <i>co</i> â€1â€hexene) terpolymers: Synthesis, molecular characterization, and evidence of the trigonal polymorph. Journal of Polymer Science Part A, 2013, 51, 3251-3259.	2.3	31
62	Functionalization of Mesoporous MCMâ€41 (Nano)particles: Preparation Methodologies, Role on Catalytic Features, and Dispersion Within Polyethylene Nanocomposites. ChemCatChem, 2013, 5, 966-976.	3.7	14
63	Amphiphilic polymers bearing gluconolactone moieties: Synthesis and long side-chain crystalline behavior. Carbohydrate Polymers, 2013, 94, 755-764.	10.2	10
64	Mesophase Formation in Random Propylene- <i>co</i> -1-octene Copolymers. Macromolecules, 2013, 46, 8557-8568.	4.8	29
65	Biodegradable Polycaprolactone-Titania Nanocomposites: Preparation, Characterization and Antimicrobial Properties. International Journal of Molecular Sciences, 2013, 14, 9249-9266.	4.1	60
66	ELECTROMAGNETIC SHIELDING FEATURES IN LIGHTWEIGHT PVDF-ALUMINUM BASED NANOCOMPOSITES. Progress in Electromagnetics Research B, 2013, 48, 175-196.	1.0	12
67	Conductive Poly(vinylidene fluoride)/Copper Hybrids: Mechanical Response and Percolation Threshold. Science of Advanced Materials, 2013, 5, 233-241.	0.7	4
68	Nanocomposites Based on Isotactic Polypropylene-Copper Nanoparticles as Electromagnetic Shields. Science of Advanced Materials, 2013, 5, 1524-1532.	0.7	9
69	Tailoring the Formation Rate of the Mesophase in Random Propylene-co-1-pentene Copolymers. Macromolecules, 2012, 45, 6481-6490.	4.8	46
70	Gas permeability properties of decorated MCM-41/polyethylene hybrids prepared by in-situ polymerization. Journal of Membrane Science, 2012, 415-416, 702-711.	8.2	42
71	Hybrids based on poly(vinylidene fluoride) and Cu nanoparticles: Characterization and EMI shielding. European Polymer Journal, 2012, 48, 1160-1168.	5.4	38
72	Titanium Dioxide–Polymer Nanocomposites with Advanced Properties. , 2012, , 119-149.		3

5

#	Article	IF	CITATIONS
73	Interfacial agent effect on rheological response and crystallite characteristics in germicidal polypropylene/titanium dioxide nanocomposites. Polymer International, 2012, 61, 1655-1665.	3.1	3
74	Glycopolymers obtained by chemical modification of wellâ€defined block copolymers. Journal of Polymer Science Part A, 2012, 50, 2565-2577.	2.3	15
75	Rheological and structural details of biocidal iPP-TiO2 nanocomposites. European Polymer Journal, 2012, 48, 586-596.	5.4	19
76	Smectic polyester/layered silicate nanostructured hybrids: Effect of modified nanoclay in the phase transitions. Polymer, 2012, 53, 386-394.	3.8	6
77	Rheological behavior of aminosaccharide-based glycopolymers obtained from ethylene-vinyl alcohol copolymers. Polymer Journal, 2011, 43, 205-213.	2.7	4
78	Enhancing the formation of the new trigonal polymorph in isotactic propene-1-pentene copolymers: Determination of the X-ray crystallinity. Macromolecular Research, 2011, 19, 1179-1185.	2.4	41
79	Metallocene ethyleneâ€ <i>co</i> â€{5,7â€dimethyloctaâ€1, 6â€diene) copolymers crosslinked using electron bea irradiation: a tunable alternative. Polymer International, 2011, 60, 1309-1317.	m 3.1	3
80	Tailoring polymer–TiO2 film properties by presence of metal (Ag, Cu, Zn) species: Optimization of antimicrobial properties. Applied Catalysis B: Environmental, 2011, 104, 346-352.	20.2	42
81	Tailoring transport properties in blends based on olephinic and liquid crystalline polymers. Journal of Membrane Science, 2011, 377, 141-150.	8.2	3
82	Branching and rheological behavior after electron irradiation in metallocene ethylene-co-norbornene copolymers. Polymer Testing, 2011, 30, 35-42.	4.8	6
83	Development of \hat{I}^2 and $\hat{I}\pm$ isotactic polypropylene polymorphs in injection molded structural foams. Chemical Papers, 2010, 64, .	2.2	2
84	Hybrid HDPE/MCM-41 nanocomposites: Crystalline structure and viscoelastic behaviour. Microporous and Mesoporous Materials, 2010, 130, 215-223.	4.4	40
85	Gamma polymorph and branching formation as inductors of resistance to electron beam irradiation in metallocene isotactic polypropylene. Polymer Degradation and Stability, 2010, 95, 462-469.	5.8	23
86	Influence of nanoparticles on elastic and optical properties of a polymeric matrix: Hypersonic studies on ethylene–vinyl alcohol copolymer–titania nanocomposites. European Polymer Journal, 2010, 46, 397-403.	5.4	12
87	Development of the mesomorphic phase in isotactic propene/higher α-olefin copolymers at intermediate comonomer content and its effect on properties. European Polymer Journal, 2010, 46, 1345-1354.	5.4	38
88	Specific lectin interactions and temperatureâ€induced reversible gels in novel waterâ€soluble glycopolymers bearing maltotrionolactone pendant groups. Journal of Polymer Science Part A, 2010, 48, 719-729.	2.3	10
89	Positron spectroscopy analysis in metallocene propylene/1â€octadecene copolymers: Parameters dependence on monoclinic and mesomorphic polymorphs. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1994-2002.	2.1	1
90	Structural changes induced by deformation in an ethylene–(vinyl alcohol) copolymer: simultaneous measurements of uniaxial stretching and <i>in situ</i> wideâ€angle Xâ€ray scattering. Polymer International, 2010, 59, 1141-1147.	3.1	0

#	Article	IF	CITATIONS
91	The Effect of PP-g-MA/Montmorillonite Ratio on the Rheological Behaviour of Polypropylene/Montmorillonite Nanocomposites. Advanced Composites Letters, 2009, 18, 096369350901800.	1.3	1
92	Self-Reinforced Hybrid Polyethylene/MCM-41 Nanocomposites: <l>ln-Situ</l> Polymerisation and Effect of MCM-41 Content on Rigidity. Journal of Nanoscience and Nanotechnology, 2009, 9, 3966-3974.	0.9	34
93	Molecular recognition capability and rheological behavior in solution of novel lactone-based glycopolymers. European Polymer Journal, 2009, 45, 3176-3186.	5.4	9
94	Crosslinking in metallocene ethylene-co-5,7-dimethylocta-1,6-diene copolymers initiated by electron-beam irradiation. Polymer, 2009, 50, 1095-1102.	3.8	14
95	Boosting TiO2-anatase antimicrobial activity: Polymer-oxide thin films. Applied Catalysis B: Environmental, 2009, 89, 441-447.	20.2	81
96	Formation of the New Trigonal Polymorph in iPPâ~'1-Hexene Copolymers. Competition with the Mesomorphic Phase. Macromolecules, 2009, 42, 702-708.	4.8	47
97	Biocidal Capability Optimization in Organicâ^'Inorganic Nanocomposites Based on Titania. Environmental Science & Technology, 2009, 43, 1630-1634.	10.0	23
98	Recognition Abilities and Development of Heat-Induced Entangled Networks in Lactone-Derived Glycopolymers Obtained from Ethylene-vinyl Alcohol Copolymers. Biomacromolecules, 2009, 10, 1828-1837.	5.4	29
99	Plasmonic Nanoparticle/Polymer Nanocomposites with Enhanced Photocatalytic Antimicrobial Properties. Journal of Physical Chemistry C, 2009, 113, 9182-9190.	3.1	66
100	Applications of Synchrotron X-Ray Diffraction to the Study of the Phase Behavior in Liquid Crystalline Polymers. Lecture Notes in Physics, 2009, , 157-182.	0.7	1
101	Effect of compatibilizer and electron irradiation on free-volume and microhardness of syndiotactic polypropylene/clay nanocomposites. Radiation Physics and Chemistry, 2008, 77, 138-145.	2.8	13
102	Molecular weight effect on the obtainment of parallel and perpendicular orientation in thermotropic poly(diethylene glycol p,p′-bibenzoate). Polymer Bulletin, 2008, 60, 89-96.	3.3	4
103	Synthesis of poly(di[methylamine]ethyl methacrylate)â€ <i>b</i> â€poly(cyclohexyl) Tj ETQq1 1 0.784314 rgBT /0 ATRP: Condensedâ€phase and solution properties. Journal of Polymer Science Part A, 2008, 46, 85-92.	Overlock 1 2.3	0 Tf 50 267 9
104	Glycopolymers resulting from ethylene–vinyl alcohol copolymers: Synthetic approach, characterization, and interactions with lectins. Journal of Polymer Science Part A, 2008, 46, 7238-7248.	2.3	26
105	Thermal and Morphological Behaviour of Wellâ€Defined Amphiphilic Triblock Copolymers Based on Cyclohexyl and Di(ethylene glycol) Methyl Ether Methacrylates. Macromolecular Chemistry and Physics, 2008, 209, 184-194.	2.2	2
106	Comonomer Length Influence on the Structure and Mechanical Response of Metallocenic Polypropylenic Materials. Macromolecular Chemistry and Physics, 2008, 209, 2259-2267.	2.2	45
107	Selfâ€Sterilized EVOHâ€TiO ₂ Nanocomposites: Interface Effects on Biocidal Properties. Advanced Functional Materials, 2008, 18, 1949-1960.	14.9	111
108	Novel glycopolymers containing aminosaccharide pendant groups by chemical modification of ethylene–vinyl alcohol copolymers. Polymer, 2008, 49, 2801-2807.	3.8	35

#	Article	IF	CITATIONS
109	Acoustic and optical phonons in EVOH–TiO2 nanocomposite films: Effect of aggregation. Journal of Luminescence, 2008, 128, 851-854.	3.1	4
110	Glycopolymers resultant from ethylene–vinyl alcohol copolymers: Degradation and rheological behavior in bulk. European Polymer Journal, 2008, 44, 2194-2201.	5.4	16
111	Simultaneous Synchrotron X-ray Diffraction and Stressâ [^] Strain or Stressâ [^] Relaxation Experiments for the Study of Parallel and Perpendicular Orientation in a Liquid Crystalline Polymer. Macromolecules, 2008, 41, 421-428.	4.8	3
112	Study on UV Excitation Properties of Y2O3:Ln3+ (Ln = Eu3+ or Tb3+) Luminescent Nanomaterials. Journal of Nanoscience and Nanotechnology, 2008, 8, 1443-1448.	0.9	18
113	Competition between α, β, and γ Polymorphs in a β-Nucleated Metallocenic Isotactic Polypropylene. Macromolecules, 2007, 40, 6871-6878.	4.8	171
114	High-Performance Dual-Action Polymerâ^'TiO ₂ Nanocomposite Films via Melting Processing. Nano Letters, 2007, 7, 2529-2534.	9.1	121
115	Ethylene/10-Undecenoic Acid Copolymers Prepared with Different Metallocene Catalysts. Macromolecular Chemistry and Physics, 2007, 208, 841-850.	2.2	12
116	Metallocenic Isotactic Poly(propylene) and its Copolymers with 1â€Hexene and Ethylene. Macromolecular Chemistry and Physics, 2007, 208, 1510-1521.	2.2	17
117	Selfâ€Assembly of ATRPâ€Synthesized PCHâ€ <i>b</i> â€P <i>t</i> BAâ€ <i>b</i> â€PCH Triblock Copolymers Obse Timeâ€Resolved SAXS. Macromolecular Chemistry and Physics, 2007, 208, 2654-2664.	rved by	8
118	Effect of Sample Configuration on the Morphology of Foamed LDPE/PP Blends Injection Molded by a Gas Counterpressure Process. Macromolecular Materials and Engineering, 2007, 292, 769-779.	3.6	5
119	Influence of isotacticity and molecular weight on the properties of metallocenic isotactic polypropylene. European Polymer Journal, 2007, 43, 2357-2370.	5.4	60
120	Aggregation and solubilization of organic solvents and petrol/gasoline in water mediated by block copolymers. European Polymer Journal, 2007, 43, 4583-4592.	5.4	6
121	Physical properties of poly(cyclohexyl methacrylate)-b-poly(iso-butyl acrylate)-b-poly(cyclohexyl) Tj ETQq1 1 0.784 48, 5581-5589.	314 rgBT 3.8	/Overlock 10 3
122	Ethylene-vinyl alcohol copolymers partially modified with benzoate groups: Study of their polymorphic behavior. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1026-1036.	2.1	9
123	Effects of clay nanoparticles and electron irradiation in the crystallization rate of syndiotactic polypropylene. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1068-1076.	2.1	12
124	Metallocene copolymers of propene and 1-hexene: The influence of the comonomer content and thermal history on the structure and mechanical properties. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1253-1267.	2.1	62
125	Small-angle X-ray scattering and linear melt rheologyof poly(tert-butyl acrylate-g-styrene) graft copolymers. Polymer, 2006, 47, 1487-1495.	3.8	16
126	Evolution of a Metallocenic sPP with Time: Changes in Crystalline Content and Enthalpic Relaxation. Macromolecular Chemistry and Physics, 2006, 207, 1564-1574.	2.2	3

#	Article	IF	CITATIONS
127	Propylene/1-Hexene Copolymer as a Tailor-Made Poly(propylene) for Membrane Preparation via the Thermally Induced Phase Separation (TIPS) Process. Macromolecular Materials and Engineering, 2006, 291, 155-161.	3.6	7
128	Thermal, morphological and rheological characterization of poly(acrylic acid-g-styrene) amphiphilic graft copolymers. Polymer, 2005, 46, 4544-4553.	3.8	38
129	Non-isothermal crystallization of a vinyl alcohol–ethylene copolymer studied by DSC and real time WAXS/SAXS scattering. Polymer, 2005, 46, 9831-9839.	3.8	5
130	Syndiotactic polypropylene and its copolymers with alpha-olefins. Effect of composition and length of comonomer. Polymer, 2005, 46, 12287-12297.	3.8	41
131	Metallocenic Copolymers of Isotactic Propylene and 1-Octadecene: Crystalline Structure and Mechanical Behavior. Macromolecular Chemistry and Physics, 2005, 206, 1221-1230.	2.2	63
132	Synthesis of triblock copolymers based on two isomer acrylate monomers by atom transfer radical polymerization. Journal of Polymer Science Part A, 2005, 43, 4828-4837.	2.3	15
133	Positron Annihilation in Metallocene Ethylene/1-Hexene Copolymers Related to Their Structure and Mechanical Properties. Macromolecules, 2005, 38, 8430-8439.	4.8	11
134	Structural details, viscoelastic and mechanical response in blends of a vinyl alcohol-ethylene copolymer and a metallocenic ethylene-1-octene copolymer. Polymer, 2004, 45, 171-179.	3.8	7
135	Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer, 2004, 45, 1569-1575.	3.8	266
136	Oxygen permeability in blends of a vinyl alcohol/ethylene copolymer and a metallocenic ethylene/1-octene copolymer. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 3766-3774.	2.1	3
137	Metallocenic copolymers of ethylene and 5,7-dimethylocta-1,6-diene: Structural characterization and mechanical behavior. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 3797-3808.	2.1	7
138	Structural characterization and mechanical behavior of metallocenic copolymers of ethylene and 5,7-dimethylocta-1,6-diene. Macromolecular Symposia, 2004, 213, 315-326.	0.7	0
139	Physical Properties of PBMA-b-PBA-b-PBMA Triblock Copolymers Synthesized by Atom Transfer Radical Polymerization. Macromolecular Chemistry and Physics, 2003, 204, 2007-2016.	2.2	9
140	Synchrotron X-ray and DSC Studies of the Phase Behaviour of Poly(diethylene glycolp,p′-bibenzoate). Macromolecular Chemistry and Physics, 2003, 204, 2155-2162.	2.2	16
141	Viscoelastic behavior in a hydroxyl-terminated polybutadiene gum and its highly filled composites: Effect of the type of filler on the relaxation processes. Journal of Applied Polymer Science, 2003, 88, 1705-1712.	2.6	30
142	Influence of the molecular weight on the thermal and mechanical properties of ethylene/norbornene copolymers. Journal of Applied Polymer Science, 2003, 89, 3358-3363.	2.6	12
143	Glass-transition temperature determination by microhardness in norbornene-ethylene copolymers. Journal of Applied Polymer Science, 2003, 89, 3666-3671.	2.6	8
144	Effect of the comonomer content on the permeation behavior in polyolefin films synthesized with metallocene catalysts. Journal of Membrane Science, 2003, 212, 167-176.	8.2	11

#	Article	IF	CITATIONS
145	Effect of short glass fiber on structure and viscoelastic behavior of olefinic polymers synthesized with metallocene catalyst. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1244-1255.	2.1	8
146	Permeation measurements in ethylene-1-hexene, ethylene-1-octene, and ethylene-1-dodecene copolymers synthesized with metallocene catalysts. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2174-2184.	2.1	15
147	Viscoelastic relaxation mechanisms of conventional polypropylene toughened by a plastomer. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1878-1888.	2.1	28
148	Blends of isotactic polypropylenes and a plastomer: crystallization and viscoelastic behavior. Macromolecular Symposia, 2003, 198, 91-102.	0.7	12
149	Structural Characterization and Relaxation Processes of the Inner Crystalline Core in Foams Based on Polyethylene/Polypropylene Blends. Polymer Journal, 2003, 35, 920-927.	2.7	6
150	Structure and Mechanical Behavior of the Mesomorphic Form in a Propylene-b-Poly(ethylene-co-propylene) Copolymer and Its Comparison with Other Thermal Treatments. Polymer Journal, 2003, 35, 766-777.	2.7	41
151	Norbornene–Ethylene Copolymers Studied by Non-Destructive Methods. Polymer Journal, 2002, 34, 779-786.	2.7	9
152	Influence of the Type of Fiber on the Structure and Viscoelastic Relaxations in Composites Based on a Metallocenic Ethylene-1-octene Copolymer. Polymer Journal, 2002, 34, 175-183.	2.7	6
153	Mechanical Properties of Ultra High Molecular Weight Polyethylene Obtained with Different Cocatalyst Systems. Polymer Journal, 2002, 34, 125-131.	2.7	25
154	Crystalline Structure and Viscoelastic Behavior in Composites of a Metallocenic Ethylene-1-octene Copolymer and Glass Fiber. Macromolecular Chemistry and Physics, 2002, 203, 718-726.	2.2	37
155	Effect of composition and molecular weight on the crystallization behavior of blends of iPP and a metallocenic ethylene/1-octene copolymer. Macromolecular Chemistry and Physics, 2002, 203, 1844-1851.	2.2	43
156	Toughening of a propylene-b-(ethylene-co-propylene) copolymer by a plastomer. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1869-1880.	2.1	20
157	Preparation of poly(tert -butyl acrylate- g -styrene) as precursors of amphiphilic graft copolymers. 1. Kinetic study and thermal properties. Polymer, 2002, 43, 3173-3179.	3.8	27
158	Preparation of poly(tert-butyl acrylate-g-styrene) as precursors of amphiphilic graft copolymers: 2. Relaxation processes and mechanical behavior. Polymer, 2002, 43, 2803-2810.	3.8	15
159	A Significant Enhance of Impact Strength with Thermal Annealing in High Density Polyethylene. Polymer Journal, 2001, 33, 270-276.	2.7	3
160	The effect of tensile drawing on the structure and relaxation processes in vinyl alcohol–ethylene copolymers. Polymer, 2001, 42, 3127-3138.	3.8	10
161	Viscoelastic and mechanical properties of poly(butyl acrylate-g-styrene) copolymers. Polymer, 2001, 42, 4647-4655.	3.8	37
162	Experimental evidence of the glass transition in a metallocene ethylene-1-octene copolymer and its composites with glass fibre. Polymer, 2001, 42, 7197-7202.	3.8	19

#	Article	IF	CITATIONS
163	The effect of annealing on the structure and relaxation processes of vinyl alcohol-ethylene copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 1-12.	2.1	15
164	Effect of Short Glass Fiber on Structure and Mechanical Behavior of an Ethylene-1-Octene Copolymer. Macromolecular Chemistry and Physics, 2001, 202, 2686-2695.	2.2	38
165	Crystal Structures and Viscoelastic Behavior in Different Morphologies of a Vinyl Alcohol-Ethylene Copolymer. Polymer Journal, 2000, 32, 999-1006.	2.7	2
166	The effect of residual acetate groups on the structure and properties of vinyl alcohol-ethylene copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 573-583.	2.1	5
167	The effect of orientation on the morphology and viscoelastic response of vinyl alcohol-ethylene copolymers. Macromolecular Chemistry and Physics, 2000, 201, 1858-1868.	2.2	12
168	The effect of thermal treatment on the structure and relaxation processes of olefinic polymers synthesized with metallocene catalysts. Polymer, 2000, 41, 5957-5965.	3.8	46
169	Viscoelastic processes in vinyl alcohol–ethylene copolymers. Influence of composition and thermal treatment. Polymer, 2000, 41, 6655-6661.	3.8	27
170	Physical Aging of Amorphous PEN:Â Isothermal, Isochronal and Isostructural Results. Macromolecules, 2000, 33, 3065-3076.	4.8	63
171	Creep Behavior in Amorphous and Semicrystalline PEN. , 2000, , 47-69.		6
172	Rapid determination of comonomer content, crystallinity, and long spacing by multiple-pulse proton NMR in ethylene-vinyl alcohol copolymers. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 2103-2109.	2.1	7
173	Wide-Angle X-ray Diffraction Study of the Phase Behavior of Vinyl Alcoholâ^'Ethylene Copolymers. Macromolecules, 1998, 31, 2559-2564.	4.8	81
174	Evaluation of orientation in vinyl alcohol-ethylene copolymer films by means of infrared dichroism and birefringence. Journal of Applied Polymer Science, 1997, 64, 791-796.	2.6	5
175	Microhardness and thermal study of the annealing effects in vinyl alcohol—ethylene copolymers. Polymer, 1995, 36, 1887-1892.	3.8	36
176	Azolyl substituted Tröger's bases. Journal of the Chemical Society Chemical Communications, 1993, , 1713-1714.	2.0	37