Scott M Mclennan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9220859/publications.pdf

Version: 2024-02-01

209 papers 32,576 citations

4146 87 h-index 174 g-index

218 all docs

218 docs citations

times ranked

218

14804 citing authors

#	Article	IF	CITATIONS
1	Composition of planetary crusts and planetary differentiation. , 2022, , 287-331.		3
2	Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 188, 106347.	2.9	40
3	InSight Constraints on the Global Character of the Martian Crust. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	45
4	Xâ€Ray Amorphous Sulfurâ€Bearing Phases in Sedimentary Rocks of Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	10
5	Xâ€Ray Amorphous Components in Sedimentary Rocks of Gale Crater, Mars: Evidence for Ancient Formation and Longâ€Lived Aqueous Activity. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006782.	3.6	22
6	The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description. Space Science Reviews, 2021, 217, 1.	8.1	131
7	Seismic Velocity Variations in a 3D Martian Mantle: Implications for the InSight Measurements. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006755.	3.6	10
8	Thickness and structure of the martian crust from InSight seismic data. Science, 2021, 373, 438-443.	12.6	140
9	Upper mantle structure of Mars from InSight seismic data. Science, 2021, 373, 434-438.	12.6	105
10	Stuart Ross Taylor (1925–2021): A tribute to his life and scientific career. Meteoritics and Planetary Science, 2021, 56, 1784-1791.	1.6	0
11	The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests. Space Science Reviews, 2021, 217, 4.	8.1	160
12	Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars. Science, 2021, 374, 711-717.	12.6	86
13	Extraformational sediment recycling on Mars. , 2020, 16, 1508-1537.		20
14	Amorphization of S, Clâ€Salts Induced by Martian Dust Activities. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006701.	3.6	8
15	PIXL: Planetary Instrument for X-Ray Lithochemistry. Space Science Reviews, 2020, 216, 1.	8.1	58
16	Chlorine Release From Common Chlorides by Martian Dust Activity. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006283.	3.6	14
17	Reevaluation of Perchlorate in Gale Crater Rocks Suggests Geologically Recent Perchlorate Addition. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006156.	3.6	10
18	Initial results from the InSight mission on Mars. Nature Geoscience, 2020, 13, 183-189.	12.9	274

#	Article	IF	CITATIONS
19	The CanMars Mars Sample Return analogue mission. Planetary and Space Science, 2019, 166, 110-130.	1.7	25
20	The potential science and engineering value of samples delivered to Earth by Mars sample return. Meteoritics and Planetary Science, 2019, 54, S3.	1.6	73
21	The potential science and engineering value of samples delivered to Earth by Mars sample return. Meteoritics and Planetary Science, 2019, 54, 667-671.	1.6	11
22	Mars Exploration Rover Opportunity., 2019,, 285-328.		5
23	Chemical alteration of fine-grained sedimentary rocks at Gale crater. Icarus, 2019, 321, 619-631.	2.5	52
24	The Sedimentary Cycle on Early Mars. Annual Review of Earth and Planetary Sciences, 2019, 47, 91-118.	11.0	59
25	Photochemical controls on chlorine and bromine geochemistry at the Martian surface. Earth and Planetary Science Letters, 2018, 497, 102-112.	4.4	28
26	Lanthanide Rare Earths. Encyclopedia of Earth Sciences Series, 2018, , 1-7.	0.1	3
27	Lanthanide Rare Earths. Encyclopedia of Earth Sciences Series, 2018, , 792-799.	0.1	2
28	Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 129, 64-85.	2.9	137
29	Sorting out compositional trends in sedimentary rocks of the Bradbury group (Aeolis Palus), Gale crater, Mars. Journal of Geophysical Research E: Planets, 2017, 122, 295-328.	3.6	64
30	Stability and fate of ferrihydrite during episodes of water/rock interactions on early Mars: An experimental approach. Journal of Geophysical Research E: Planets, 2017, 122, 358-382.	3.6	33
31	Redox stratification of an ancient lake in Gale crater, Mars. Science, 2017, 356, .	12.6	209
32	Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 129, 49-57.	2.9	71
33	Large sulfur isotope fractionations in Martian sediments at Gale crater. Nature Geoscience, 2017, 10, 658-662.	12.9	53
34	Classification scheme for sedimentary and igneous rocks in Gale crater, Mars. Icarus, 2017, 284, 1-17.	2.5	46
35	Geochemical constraints on the presence of clay minerals in the Burns formation, Meridiani Planum, Mars. Icarus, 2017, 281, 137-150.	2.5	16
36	Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars. Geophysical Research Letters, 2016, 43, 7398-7407.	4.0	110

#	Article	lF	CITATIONS
37	Composition of conglomerates analyzed by the Curiosity rover: Implications for Gale Crater crust and sediment sources. Journal of Geophysical Research E: Planets, 2016, 121, 353-387.	3. 6	53
38	Presentation of the Mineralogical Society of America Award for 2015 to Nicholas J. Tosca. American Mineralogist, 2016, 101, 998-999.	1.9	0
39	High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour Crater, Mars. American Mineralogist, 2016, 101, 1389-1405.	1.9	55
40	The association of hydrogen with sulfur on Mars across latitudes, longitudes, and compositional extremes. Journal of Geophysical Research E: Planets, 2016, 121, 1321-1341.	3.6	9
41	Smectite deposits in Marathon Valley, Endeavour Crater, Mars, identified using CRISM hyperspectral reflectance data. Geophysical Research Letters, 2016, 43, 4885-4892.	4.0	39
42	Discordant Kâ€Ar and young exposure dates for the Windjana sandstone, Kimberley, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2016, 121, 2176-2192.	3.6	19
43	The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board <i>Curiosity</i> Journal of Geophysical Research E: Planets, 2016, 121, 784-804.	3.6	67
44	Mars Reconnaissance Orbiter and Opportunity observations of the Burns formation: Crater hopping at Meridiani Planum. Journal of Geophysical Research E: Planets, 2015, 120, 429-451.	3.6	30
45	Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science, 2015, 350, aac7575.	12.6	471
46	Sulfates hydrating bulk soil in the Martian low and middle latitudes. Geophysical Research Letters, 2014, 41, 7987-7996.	4.0	35
47	Trace element geochemistry (Li, Ba, Sr, and Rb) using <i>Curiosity</i> 's ChemCam: Early results for Gale crater from Bradbury Landing Site to Rocknest. Journal of Geophysical Research E: Planets, 2014, 119, 255-285.	3.6	86
48	A martian case study of segmenting images automatically for granulometry and sedimentology, Part 2: Assessment. Icarus, 2014, 229, 408-417.	2.5	3
49	Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1245267.	12.6	323
50	A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1242777.	12.6	687
51	Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.	12.6	508
52	Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover. Science, 2014, 343, 1244797.	12.6	475
53	In Situ Radiometric and Exposure Age Dating of the Martian Surface. Science, 2014, 343, 1247166.	12.6	224
54	Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1244734.	12.6	246

#	Article	IF	CITATIONS
55	Ancient Aqueous Environments at Endeavour Crater, Mars. Science, 2014, 343, 1248097.	12.6	176
56	A martian case study of segmenting images automatically for granulometry and sedimentology, Part 1: Algorithm. Icarus, 2014, 229, 400-407.	2.5	9
57	Behavior of bromide, chloride, and phosphate during low-temperature aqueous Fe(II) oxidation processes on Mars. Journal of Geophysical Research E: Planets, 2014, 119, 998-1012.	3.6	7
58	Geochemical diversity in first rocks examined by the Curiosity Rover in Gale Crater: Evidence for and significance of an alkali and volatileâ€rich igneous source. Journal of Geophysical Research E: Planets, 2014, 119, 64-81.	3.6	113
59	Sulfur-bearing phases detected by evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2014, 119, 373-393.	3.6	65
60	Constraints on abundance, composition, and nature of Xâ€ray amorphous components of soils and rocks at Gale crater, Mars. Journal of Geophysical Research E: Planets, 2014, 119, 2640-2657.	3.6	73
61	Does martian soil release reactive halogens to the atmosphere?. Icarus, 2013, 226, 1438-1446.	2.5	12
62	X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science, 2013, 341, 1238932.	12.6	327
63	Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science, 2013, 341, 1239505.	12.6	280
64	Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover. Science, 2013, 341, 263-266.	12.6	327
65	Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 2013, 341, 1238937.	12.6	367
66	Geochemical Reservoirs and Timing of Sulfur Cycling on Mars. Space Science Reviews, 2013, 174, 251-300.	8.1	103
67	Behavior of Ni, Zn and Cr during low temperature aqueous Fe oxidation processes on Mars. Geochimica Et Cosmochimica Acta, 2013, 109, 365-383.	3.9	6
68	Martian Fluvial Conglomerates at Gale Crater. Science, 2013, 340, 1068-1072.	12.6	326
69	Smaller, better, more: Five decades of advances in geochemistry. , 2013, , .		5
70	The Petrochemistry of Jake_M: A Martian Mugearite. Science, 2013, 341, 1239463.	12.6	134
71	Electrochemical Synthesis of Nitro-Chitosan and Its Performance in Chromium Removal. Coatings, 2013, 3, 140-152.	2.6	10
72	Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science, 2013, 341, 1238670.	12.6	215

#	Article	IF	Citations
73	Geochemistry of Sedimentary Processes on Mars. , 2012, , 119-138.		19
74	Pedogenic hematitic concretions from the Triassic New Haven Arkose, Connecticut: Implications for understanding Martian diagenetic processes. Chemical Geology, 2012, 312-313, 195-208.	3.3	8
75	Ancient Impact and Aqueous Processes at Endeavour Crater, Mars. Science, 2012, 336, 570-576.	12.6	176
76	Geochemical Reservoirs and Timing of Sulfur Cycling on Mars. Space Sciences Series of ISSI, 2012, , 251-300.	0.0	2
77	Mars Sedimentary Geology: Key Concepts and Outstanding Questions. Astrobiology, 2011, 11, 77-87.	3.0	93
78	Physicochemical properties of concentrated Martian surface waters. Journal of Geophysical Research, 2011, 116, .	3.3	35
79	Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater. Journal of Geophysical Research, 2011, 116, .	3.3	106
80	Martian surface heat production and crustal heat flow from Mars Odyssey Gamma-Ray spectrometry. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	66
81	Sulfur on Mars. Elements, 2010, 6, 107-112.	0.5	148
82	K and Cl concentrations on the Martian surface determined by the Mars Odyssey Gamma Ray Spectrometer: Implications for bulk halogen abundances in Mars. Geophysical Research Letters, 2010, 37, .	4.0	29
83	Regional and grain size influences on the geochemistry of soil at Gusev crater, Mars. Journal of Geophysical Research, 2010, 115, .	3.3	13
84	Exploration of Victoria Crater by the Mars Rover Opportunity. Science, 2009, 324, 1058-1061.	12.6	141
85	Asteroids and andesites. Nature, 2009, 459, E1-E1.	27.8	11
86	Experimental constraints on the evaporation of partially oxidized acid-sulfate waters at the martian surface. Geochimica Et Cosmochimica Acta, 2009, 73, 1205-1222.	3.9	24
87	Humidity-induced phase transitions of ferric sulfate minerals studied by in situ and ex situ X-ray diffraction. American Mineralogist, 2009, 94, 1629-1637.	1.9	18
88	Chemically striking regions on Mars and Stealth revisited. Journal of Geophysical Research, 2009, $114, \ldots$	3.3	43
89	Veneers, rinds, and fracture fills: Relatively late alteration of sedimentary rocks at Meridiani Planum, Mars. Journal of Geophysical Research, 2008, 113, .	3.3	57
90	Fe oxidation processes at Meridiani Planum and implications for secondary Fe mineralogy on Mars. Journal of Geophysical Research, 2008, 113 , .	3.3	73

#	Article	IF	Citations
91	Hematite spherules at Meridiani: Results from MI, Miniâ€TES, and Pancam. Journal of Geophysical Research, 2008, 113, .	3.3	38
92	Surface processes recorded by rocks and soils on Meridiani Planum, Mars: Microscopic Imager observations during Opportunity's first three extended missions. Journal of Geophysical Research, 2008, 113, .	3.3	39
93	Lightâ€toned salty soils and coexisting Siâ€rich species discovered by the Mars Exploration Rover Spirit in Columbia Hills. Journal of Geophysical Research, 2008, 113, .	3.3	108
94	Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate. Journal of Geophysical Research, 2008, 113 , .	3.3	99
95	Detection of Silica-Rich Deposits on Mars. Science, 2008, 320, 1063-1067.	12.6	399
96	Water Activity and the Challenge for Life on Early Mars. Science, 2008, 320, 1204-1207.	12.6	222
97	Composition and evolution of the continental crust. , 2008, , 301-324.		3
98	Implications of observed primary lithologies. , 2008, , 501-518.		10
99	The sedimentary rock cycle of Mars. , 2008, , 541-577.		61
100	Mars: early differentiation and planetary composition. , 2008, , 103-140.		0
101	Visible and near-infrared multispectral analysis of rocks at Meridiani Planum, Mars, by the Mars Exploration Rover Opportunity. Journal of Geophysical Research, 2007, 112, .	3.3	56
102	Production of hydrogen peroxide in Martian and lunar soils. Earth and Planetary Science Letters, 2007, 255, 41-52.	4.4	73
103	A â^1/43.5ÂGa record of water-limited, acidic weathering conditions on Mars. Earth and Planetary Science Letters, 2007, 260, 432-443.	4.4	140
104	Application of the Pitzer ion interaction model to isopiestic data for the Fe2(SO4)3–H2SO4–H2O system at 298.15 and 323.15K. Geochimica Et Cosmochimica Acta, 2007, 71, 2680-2698.	3.9	27
105	Mars Odyssey Gamma Ray Spectrometer elemental abundances and apparent relative surface age: Implications for Martian crustal evolution. Journal of Geophysical Research, 2007, 112, .	3.3	28
106	Variations in K/Th on Mars. Journal of Geophysical Research, 2007, 112, .	3.3	53
107	Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle Crater to Purgatory Ripple. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	149
108	Gusev crater: Wind-related features and processes observed by the Mars Exploration Rover Spirit. Journal of Geophysical Research, 2006, 111 , $n/a-n/a$.	3.3	140

#	Article	IF	Citations
109	Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	238
110	In situ and experimental evidence for acidic weathering of rocks and soils on Mars. Journal of Geophysical Research, 2006, 111 , n/a - n/a .	3.3	169
111	Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	107
112	Chemical divides and evaporite assemblages on Mars. Earth and Planetary Science Letters, 2006, 241, 21-31.	4.4	108
113	Nickel on Mars: Constraints on meteoritic material at the surface. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	65
114	Two Years at Meridiani Planum: Results from the Opportunity Rover. Science, 2006, 313, 1403-1407.	12.6	188
115	Mixing relationships and the effects of secondary alteration in the Wishstone and Watchtower Classes of Husband Hill, Gusev Crater, Mars. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	27
116	Bedrock formation at Meridiani Planum. Nature, 2006, 443, E1-E2.	27.8	28
117	Evidence for Water at Meridiani. Elements, 2006, 2, 163-167.	0.5	10
118	An integrated view of the chemistry and mineralogy of martian soils. Nature, 2005, 436, 49-54.	27.8	348
119	Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater. Nature, 2005, 436, 66-69.	27.8	240
120	An astrobiological perspective on Meridiani Planum. Earth and Planetary Science Letters, 2005, 240, 179-189.	4.4	113
121	Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 2005, 240, 11-72.	4.4	496
122	Chemistry and mineralogy of outcrops at Meridiani Planum. Earth and Planetary Science Letters, 2005, 240, 73-94.	4.4	349
123	Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 2005, 240, 95-121.	4.4	506
124	Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum. Earth and Planetary Science Letters, 2005, 240, 122-148.	4.4	226
125	Experimental epithermal alteration of synthetic Los Angeles meteorite: Implications for the origin of Martian soils and identification of hydrothermal sites on Mars. Journal of Geophysical Research, 2005, 110 , .	3.3	52
126	Wind-Related Processes Detected by the Spirit Rover at Gusev Crater, Mars. Science, 2004, 305, 810-813.	12.6	94

#	Article	IF	Citations
127	Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site. Science, 2004, 306, 1723-1726.	12.6	153
128	Textures of the Soils and Rocks at Gusev Crater from Spirit's Microscopic Imager. Science, 2004, 305, 824-826.	12.6	130
129	Evidence from Opportunity's Microscopic Imager for Water on Meridiani Planum. Science, 2004, 306, 1727-1730.	12.6	146
130	Pancam Multispectral Imaging Results from the Spirit Rover at Gusev Crater. Science, 2004, 305, 800-806.	12.6	153
131	Pancam Multispectral Imaging Results from the Opportunity Rover at Meridiani Planum. Science, 2004, 306, 1703-1709.	12.6	135
132	In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars. Science, 2004, 306, 1709-1714.	12.6	845
133	The Spirit Rover's Athena Science Investigation at Gusev Crater, Mars. Science, 2004, 305, 794-799.	12.6	404
134	The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars. Science, 2004, 306, 1698-1703.	12.6	507
135	Scale and timing of Rare Earth Element redistribution in the Taconian foreland of New England. Sedimentology, 2004, 51, 885-897.	3.1	14
136	Acid-sulfate weathering of synthetic Martian basalt: The acid fog model revisited. Journal of Geophysical Research, 2004, 109, .	3.3	199
137	Textures of the Soils and Rocks at Gusev Crater from Spirit's Microscopic Imager. Science, 2004, 305, 824-826.	12.6	7
138	The Spirit Rover's Athena Science Investigation at Gusev Crater, Mars. Science, 2004, 305, 794-799.	12.6	27
139	Largeâ€ion lithophile element fractionation during the early differentiation of Mars and the composition of the martian primitive mantle. Meteoritics and Planetary Science, 2003, 38, 895-904.	1.6	39
140	Sedimentary silica on Mars. Geology, 2003, 31, 315.	4.4	109
141	Chemical Composition and Element Distribution in the Earth's Crust., 2003,, 697-719.		13
142	Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2001, 2, .	2.5	1,537
143	Crustal heat production and the thermal evolution of Mars. Geophysical Research Letters, 2001, 28, 4019-4022.	4.0	53
144	Pb isotope compositions of modern deep sea turbidites. Earth and Planetary Science Letters, 2001, 184, 489-503.	4.4	91

#	Article	IF	CITATIONS
145	Detrital Zircon Geochronology of Taconian and Acadian Foreland Sedimentary Rocks in New England. Journal of Sedimentary Research, 2001, 71, 305-317.	1.6	96
146	Late Diagenetic Redistribution of Uranium and Disturbance of the U-Pb Whole Rock Isotope System in a Black Shale. Journal of Sedimentary Research, 2000, 70, 1234-1245.	1.6	20
147	chemical composition of martian soil and rocks: Complex mixing and sedimentary transport. Geophysical Research Letters, 2000, 27, 1335-1338.	4.0	44
148	Nd and Pb isotopic evidence for provenance and post-depositional alteration of the Paleoproterozoic Huronian Supergroup, Canada. Precambrian Research, 2000, 102, 263-278.	2.7	53
149	Mineralogic controls on REE mobility during black-shale diagenesis. Journal of Sedimentary Research, 1999, 69, 1071-1082.	1.6	67
150	Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England. Sedimentology, 1998, 45, 635-655.	3.1	216
151	A petrographic approach for evaluating trace-element mobility in a black shale. Journal of Sedimentary Research, 1998, 68, 970-980.	1.6	58
152	Composition of the Upper Continental Crust Revisited: Insights from Sedimentary Rocks. Mineralogical Magazine, 1998, 62A, 983-984.	1.4	9
153	Grenvillian provenance for the amphibolite-grade Trap Falls Formation: implications for early Paleozoic tectonic history of New England. Canadian Journal of Earth Sciences, 1997, 34, 1286-1294.	1.3	8
154	Heat Flow and the Chemical Composition of Continental Crust. Journal of Geology, 1996, 104, 369-377.	1.4	96
155	Effects of Chemical Weathering and Sorting on the Petrogenesis of Siliciclastic Sediments, with Implications for Provenance Studies. Journal of Geology, 1996, 104, 525-542.	1.4	588
156	The Taconian orogeny in southern New England: Nd-isotope evidence against addition of juvenile components. Canadian Journal of Earth Sciences, 1996, 33, 1612-1627.	1.3	23
157	Geochemical and Nd/Pb Isotopic Evidence for the Provenance of the Early Proterozoic Virginia Formation, Minnesota. Implications for the Tectonic Setting of the Animikie Basin. Journal of Geology, 1995, 103, 147-168.	1.4	66
158	The geochemical evolution of the continental crust. Reviews of Geophysics, 1995, 33, 241.	23.0	3,475
159	Early Proterozoic crustal evolution: Geochemical and NdPb isotopic evidence from metasedimentary rocks, southwestern North America. Geochimica Et Cosmochimica Acta, 1995, 59, 1153-1177.	3.9	249
160	Rare earth element redistribution and its effects on the neodymium isotope system in the austin Glen Member of the Normanskill Formation, New York, USA. Geochimica Et Cosmochimica Acta, 1994, 58, 5245-5253.	3.9	107
161	Lead isotopes as a provenance tool for quartz: Examples from plutons and quartzite, northeastern Minnesota, USA. Geochimica Et Cosmochimica Acta, 1994, 58, 4455-4464.	3.9	13
162	Resetting of neodymium isotopes and redistribution of REEs during sedimentary processes: The Early Proterozoic Chelmsford Formation, Sudbury Basin, Ontario, Canada. Geochimica Et Cosmochimica Acta, 1994, 58, 931-941.	3.9	112

#	Article	IF	Citations
163	Rare earth element geochemistry and the "tetrad―effect. Geochimica Et Cosmochimica Acta, 1994, 58, 2025-2033.	3.9	193
164	Geochemical approaches to sedimentation, provenance, and tectonics. Special Paper of the Geological Society of America, 1993, , 21-40.	0.5	1,289
165	Weathering and Global Denudation. Journal of Geology, 1993, 101, 295-303.	1.4	1,098
166	The taylor colloquium: An introduction. Geochimica Et Cosmochimica Acta, 1992, 56, 871-873.	3.9	0
167	Samarium/neodymium elemental and isotopic systematics in sedimentary rocks. Geochimica Et Cosmochimica Acta, 1992, 56, 887-898.	3.9	142
168	Sedimentary Rocks and Crustal Evolution: Tectonic Setting and Secular Trends. Journal of Geology, 1991, 99, 1-21.	1.4	677
169	Geochemical and Ndî—'Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochimica Et Cosmochimica Acta, 1990, 54, 2015-2050.	3.9	936
170	Chapter 7. RARE EARTH ELEMENTS IN SEDIMENTARY ROCKS: INFLUENCE OF PROVENANCE AND SEDIMENTARY PROCESSES., 1989, , 169-200.		1,040
171	Effects of sedimentary sorting on neodymium isotopes in deep-sea turbidites. Nature, 1989, 337, 547-549.	27.8	83
172	Recycling of the continental crust. Pure and Applied Geophysics, 1988, 128, 683-724.	1.9	60
173	Crustal evolution: Comments on "The Archean-Proterozoic transition: Evidence from the geochemistry of metasedimentary rocks from Guyana and Montana―by A. K. Gibbs, C. W. Montgomery, P. A. O'day and E. A. Erslev. Geochimica Et Cosmochimica Acta, 1988, 52, 785-787.	3.9	18
174	Chapter 79 The significance of the rare earths in geochemistry and cosmochemistry. Fundamental Theories of Physics, 1988, 11, 485-578.	0.3	62
175	The chemical composition of the Archaean crust. Geological Society Special Publication, 1986, 24, 173-178.	1.3	25
176	Rare earth element patterns in Archean high-grade metasediments and their tectonic significance. Geochimica Et Cosmochimica Acta, 1986, 50, 2267-2279.	3.9	156
177	Large ion lithophile elements in rocks from high-pressure granulite facies terrains. Geochimica Et Cosmochimica Acta, 1985, 49, 1645-1655.	3.9	198
178	A lower crustal origin for massif-type anorthosites. Nature, 1984, 311, 372-374.	27.8	50
179	Petrological Characteristics of Archean Graywackes. Journal of Sedimentary Research, 1984, Vol. 54, .	1.6	2
180	Geochemistry of Archean metasedimentary rocks from West Greenland. Geochimica Et Cosmochimica Acta, 1984, 48, 1-13.	3.9	110

#	Article	IF	Citations
181	Archaean Sedimentary Rocks and Their Relation to the Composition of the Archaean Continental Crust., 1984,, 47-72.		33
182	Continental freeboard, sedimentation rates and growth of continental crust. Nature, 1983, 306, 169-172.	27.8	56
183	Geochemical evolution of Archean shales from South Africa. I. The Swaziland and Pongola Supergroups. Precambrian Research, 1983, 22, 93-124.	2.7	180
184	Geochemistry of Archean shales from the Pilbara Supergroup, Western Australia. Geochimica Et Cosmochimica Acta, 1983, 47, 1211-1222.	3.9	266
185	Geochemistry of loess, continental crustal composition and crustal model ages. Geochimica Et Cosmochimica Acta, 1983, 47, 1897-1905.	3.9	461
186	Geochemical application of spark-source mass spectrography. Chemical Geology, 1983, 39, 273-280.	3.3	16
187	Geochemistry of Early Proterozoic sedimentary rocks and the Archean/Proterozoic boundary. Memoir of the Geological Society of America, 1983, , 119-132.	0.5	19
188	Geochemical Constraints on the Growth of the Continental Crust. Journal of Geology, 1982, 90, 347-361.	1.4	231
189	On the geochemical evolution of sedimentary rocks. Chemical Geology, 1982, 37, 335-350.	3.3	40
190	Geochemistry of the Archean Yellowknife Supergroup. Geochimica Et Cosmochimica Acta, 1981, 45, 1111-1129.	3.9	71
191	Chapter 21 The Rare Earth Element Evidence in Precambrian Sedimentary Rocks: Implications for Crustal Evolution. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 1981, 4, 527-548.	0.2	27
192	Th and U in sedimentary rocks: crustal evolution and sedimentary recycling. Nature, 1980, 285, 621-624.	27.8	173
193	Rare earth element-thorium correlations in sedimentary rocks, and the composition of the continental crust. Geochimica Et Cosmochimica Acta, 1980, 44, 1833-1839.	3.9	309
194	Geochemical standards for sedimentary rocks: Trace-element data for U.S.G.S. standards SCo-1, MAG-1 and SGR-1. Chemical Geology, 1980, 29, 333-343.	3.3	38
195	Timing and Relationships among Precambrian Crustal and Atmospheric Evolution and Banded Iron-Formations., 1980,, 73-82.		1
196	Timing and Relationships Among Precambrian Crustal and Atmospheric Evolution and Banded Iron-Formations., 1980,, 73-82.		0
197	Discussion on 'Chemistry, thermal gradients and evolution of the lower continental crust' by J. Tarney & B. F. Windley. Journal of the Geological Society, 1979, 136, 497.2-500.	2.1	8
198	The geochemistry of the carbonate-rich Espanola Formation (Huronian) with emphasis on the rare earth elements. Canadian Journal of Earth Sciences, 1979, 16, 230-239.	1.3	48

#	Article	IF	CITATIONS
199	Rare earth element mobility associated with uranium mineralisation. Nature, 1979, 282, 247-250.	27.8	121
200	Chemical relationships among irghizites, zhamanshinites, Australasian tektites and Henbury impact glasses. Geochimica Et Cosmochimica Acta, 1979, 43, 1551-1565.	3.9	76
201	Rare earth elements in Huronian (Lower Proterozoic) sedimentary rocks: Composition and evolution of the post-Kenoran upper crust. Geochimica Et Cosmochimica Acta, 1979, 43, 375-388.	3.9	92
202	Paleo-environment of iron rich sedimentary rocks: A Discussion. Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 1976, 65, 1126-1129.	1.3	2
203	The planets: their formation and differentiation. , 0, , 5-31.		0
204	Mars: crustal composition and evolution. , 0, , 141-180.		4
205	The Archean crust of the Earth. , 0, , 249-274.		0
206	The Post-Archean continental crust. , 0, , 275-300.		0
207	Reflections: the elusive patterns of planetary crusts. , 0, , 352-363.		0
208	Sediments and Soils: Chemistry and Abundances. AGU Reference Shelf, 0, , 8-19.	0.6	33
209	Provenance of Amazon Fan muds: constraints from Nd and Pb isotopes. , 0, , .		12