Rejko KrÜger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9220350/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantifying activities of daily living impairment in Parkinson's disease using the Functional Activities Questionnaire. Neurological Sciences, 2022, 43, 1047-1054.	1.9	2
2	Parkinson's Disease Phenotypes in Patient Neuronal Cultures and Brain Organoids Improved by <scp>2â€Hydroxypropylâ€i²â€Cyclodextrin</scp> Treatment. Movement Disorders, 2022, 37, 80-94.	3.9	37
3	Mendelian Randomisation Study of Smoking, Alcohol, and Coffee Drinking in Relation to Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, 267-282.	2.8	21
4	DJâ€1 depletion prevents immunoaging in Tâ€cell compartments. EMBO Reports, 2022, 23, e53302.	4.5	9
5	Dairy Intake and Parkinson's Disease: A Mendelian Randomization Study. Movement Disorders, 2022, 37, 857-864.	3.9	15
6	Prevalence and Cost of Care for Parkinson's Disease in Luxembourg: An Analysis of National Healthcare Insurance Data. PharmacoEconomics - Open, 2022, , .	1.8	0
7	PINK1 Protects against Staurosporine-Induced Apoptosis by Interacting with Beclin1 and Impairing Its Pro-Apoptotic Cleavage. Cells, 2022, 11, 678.	4.1	11
8	Additive Effect of Dopaminergic Medication on Gait Under Single and Dual-Tasking Is Greater Than of Deep Brain Stimulation in Advanced Parkinson Disease With Long-duration Deep Brain Stimulation. Neuromodulation, 2022, , .	0.8	2
9	Impact of COVID-19 Pandemic on (Health) Care Situation of People with Parkinson's Disease in Germany (Care4PD). Brain Sciences, 2022, 12, 62.	2.3	7
10	Generation and characterization of a genetic Parkinson's disease-patient derived iPSC line DJ-1-delP (LCSBi008-A). Stem Cell Research, 2022, 62, 102792.	0.7	2
11	Smart Scheduling (SMASCH): multi-appointment scheduling system for longitudinal clinical research studies. JAMIA Open, 2022, 5, .	2.0	3
12	Generation of isogenic control DJ-1-delP GC13 for the genetic Parkinsonâ€~s disease-patient derived iPSC line DJ-1-delP (LCSBi008-A-1). Stem Cell Research, 2022, 62, 102815.	0.7	0
13	PARK7/DJ-1 promotes pyruvate dehydrogenase activity and maintains Treg homeostasis during ageing. Nature Metabolism, 2022, 4, 589-607.	11.9	18
14	Genome-wide Association and Meta-analysis of Age at Onset in Parkinson Disease. Neurology, 2022, 99, .	1.1	25
15	GDAP1 loss of function inhibits the mitochondrial pyruvate dehydrogenase complex by altering the actin cytoskeleton. Communications Biology, 2022, 5, .	4.4	12
16	The Interaction between <scp><i>HLAâ€DRB1</i></scp> and Smoking in Parkinson's Disease Revisited. Movement Disorders, 2022, 37, 1929-1937.	3.9	4
17	Mitochondrial and Clearance Impairment in p. <scp>D620N VPS35</scp> Patientâ€Đerived Neurons. Movement Disorders, 2021, 36, 704-715.	3.9	32
18	Integrated, automated maintenance, expansion and differentiation of 2D and 3D patient-derived cellular models for high throughput drug screening. Scientific Reports, 2021, 11, 1439.	3.3	20

#	Article	IF	CITATIONS
19	The Role of DJ-1 in Cellular Metabolism and Pathophysiological Implications for Parkinson's Disease. Cells, 2021, 10, 347.	4.1	31
20	Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nature Genetics, 2021, 53, 294-303.	21.4	198
21	PINK1 deficiency impairs adult neurogenesis of dopaminergic neurons. Scientific Reports, 2021, 11, 6617.	3.3	21
22	Deep sequencing of sncRNAs reveals hallmarks and regulatory modules of the transcriptome during Parkinson's disease progression. Nature Aging, 2021, 1, 309-322.	11.6	26
23	Peripheral decarboxylase inhibitors paradoxically induce aromatic L-amino acid decarboxylase. Npj Parkinson's Disease, 2021, 7, 29.	5.3	14
24	Editorial: Celebrating the Diversity of Genetic Research to Dissect the Pathogenesis of Parkinson's Disease. Frontiers in Neurology, 2021, 12, 648417.	2.4	5
25	Adverse Life Trajectories Are a Risk Factor for SARS-CoV-2 IgA Seropositivity. Journal of Clinical Medicine, 2021, 10, 2159.	2.4	0
26	The evolution and social determinants of mental health during the first wave of the COVID-19 outbreak in Luxembourg. Psychiatry Research, 2021, 303, 114090.	3.3	11
27	Exploring the contribution of the mitochondrial disulfide relay system to Parkinson's disease: the PINK1/CHCHD4 interplay. Neural Regeneration Research, 2021, 16, 2222.	3.0	5
28	The Parkinson's-disease-associated mutation LRRK2-G2019S alters dopaminergic differentiation dynamics via NR2F1. Cell Reports, 2021, 37, 109864.	6.4	20
29	The Moderating Role of Resilience in the Personality-Mental Health Relationship During the COVID-19 Pandemic. Frontiers in Psychiatry, 2021, 12, 745636.	2.6	6
30	Gene-corrected p.A30P SNCA patient-derived isogenic neurons rescue neuronal branching and function. Scientific Reports, 2021, 11, 21946.	3.3	2
31	Therapeutic maps for a sensor-based evaluation of deep brain stimulation programming. Biomedizinische Technik, 2021, 66, 603-611.	0.8	0
32	Generation of two iPS cell lines (HIHDNDi001-A and HIHDNDi001-B) from a Parkinson's disease patient carrying the heterozygous p.A30P mutation in SNCA. Stem Cell Research, 2020, 48, 101951.	0.7	5
33	Contributing Factors and Evolution of Impulse Control Disorder in the Luxembourg Parkinson Cohort. Frontiers in Neurology, 2020, 11, 578924.	2.4	1
34	Common diseases alter the physiological age-related blood microRNA profile. Nature Communications, 2020, 11, 5958.	12.8	46
35	Human Dopaminergic Neurons Lacking PINK1 Exhibit Disrupted Dopamine Metabolism Related to Vitamin B6 Co-Factors. IScience, 2020, 23, 101797.	4.1	20
36	Mitochondria interaction networks show altered topological patterns in Parkinson's disease. Npj Systems Biology and Applications, 2020, 6, 38.	3.0	7

#	Article	IF	CITATIONS
37	Haploinsufficiency due to a novel ACO2 deletion causes mitochondrial dysfunction in fibroblasts from a patient with dominant optic nerve atrophy. Scientific Reports, 2020, 10, 16736.	3.3	12
38	The Emerging Role of RHOT1/Miro1 in the Pathogenesis of Parkinson's Disease. Frontiers in Neurology, 2020, 11, 587.	2.4	30
39	Using High-Content Screening to Generate Single-Cell Gene-Corrected Patient-Derived iPS Clones Reveals Excess Alpha-Synuclein with Familial Parkinson's Disease Point Mutation A30P. Cells, 2020, 9, 2065.	4.1	17
40	Bidirectional Relation Between Parkinson's Disease and Glioblastoma Multiforme. Frontiers in Neurology, 2020, 11, 898.	2.4	15
41	A patient-based model of RNA mis-splicing uncovers treatment targets in Parkinson's disease. Science Translational Medicine, 2020, 12, .	12.4	24
42	Induced pluripotent stem cell line (LCSBi001-A) derived from a patient with Parkinson's disease carrying the p.D620N mutation in VPS35. Stem Cell Research, 2020, 45, 101776.	0.7	5
43	Parkinson's disease-associated alterations of the gut microbiome predict disease-relevant changes in metabolic functions. BMC Biology, 2020, 18, 62.	3.8	122
44	Genetic Architecture of Parkinson's Disease in the Indian Population: Harnessing Genetic Diversity to Address Critical Gaps in Parkinson's Disease Research. Frontiers in Neurology, 2020, 11, 524.	2.4	23
45	Machine learning-assisted neurotoxicity prediction in human midbrain organoids. Parkinsonism and Related Disorders, 2020, 75, 105-109.	2.2	41
46	The atypical chemokine receptor ACKR3/CXCR7 is a broad-spectrum scavenger for opioid peptides. Nature Communications, 2020, 11, 3033.	12.8	74
47	Evaluating the Use of Circulating MicroRNA Profiles for Lung Cancer Detection in Symptomatic Patients. JAMA Oncology, 2020, 6, 714.	7.1	84
48	Unraveling Molecular Mechanisms of THAP1 Missense Mutations in DYT6 Dystonia. Journal of Molecular Neuroscience, 2020, 70, 999-1008.	2.3	13
49	Missing heritability in Parkinson's disease: the emerging role of non-coding genetic variation. Journal of Neural Transmission, 2020, 127, 729-748.	2.8	27
50	Excess of singleton loss-of-function variants in Parkinson's disease contributes to genetic risk. Journal of Medical Genetics, 2020, 57, 617-623.	3.2	10
51	Impaired mitochondrial–endoplasmic reticulum interaction and mitophagy in Miro1-mutant neurons in Parkinson's disease. Human Molecular Genetics, 2020, 29, 1353-1364.	2.9	37
52	Unmet Needs of People With Parkinson's Disease and Their Caregivers During COVID-19-Related Confinement: An Explorative Secondary Data Analysis. Frontiers in Neurology, 2020, 11, 615172.	2.4	12
53	Analysis and visualisation of tremor dynamics in deep brain stimulation patients. Current Directions in Biomedical Engineering, 2020, 6, 115-118.	0.4	0
54	A rule-based expert system for real-time feedback-control in deep brain stimulation. Current Directions in Biomedical Engineering, 2020, 6, 103-106.	0.4	0

#	Article	IF	CITATIONS
55	Connecting environmental exposure and neurodegeneration using cheminformatics and high resolution mass spectrometry: potential and challenges. Environmental Sciences: Processes and Impacts, 2019, 21, 1426-1445.	3.5	13
56	Mutations in <i>RHOT1</i> Disrupt Endoplasmic Reticulum–Mitochondria Contact Sites Interfering with Calcium Homeostasis and Mitochondrial Dynamics in Parkinson's Disease. Antioxidants and Redox Signaling, 2019, 31, 1213-1234.	5.4	56
57	Automated high-throughput high-content autophagy and mitophagy analysis platform. Scientific Reports, 2019, 9, 9455.	3.3	13
58	Integrated Analyses of Microbiome and Longitudinal Metabolome Data Reveal Microbial-Host Interactions on Sulfur Metabolism in Parkinson's Disease. Cell Reports, 2019, 29, 1767-1777.e8.	6.4	102
59	Gene-environment interaction and Mendelian randomisation. Revue Neurologique, 2019, 175, 597-603.	1.5	9
60	Anodal tDCS modulates cortical activity and synchronization in Parkinson's disease depending on motor processing. NeuroImage: Clinical, 2019, 22, 101689.	2.7	13
61	α-Synuclein in Parkinson's disease: causal or bystander?. Journal of Neural Transmission, 2019, 126, 815-840.	2.8	88
62	Family-based association study on functional α-synuclein polymorphisms in attention-deficit/hyperactivity disorder. ADHD Attention Deficit and Hyperactivity Disorders, 2019, 11, 107-111.	1.7	8
63	Variants in Miro1 Cause Alterations of ER-Mitochondria Contact Sites in Fibroblasts from Parkinson's Disease Patients. Journal of Clinical Medicine, 2019, 8, 2226.	2.4	39
64	Multilingual Validation of the First French Version of Munich Dysphagia Test—Parkinson's Disease (MDT-PD) in the Luxembourg Parkinson's Study. Frontiers in Neurology, 2019, 10, 1180.	2.4	3
65	Large-scale validation of miRNAs by disease association, evolutionary conservation and pathway activity. RNA Biology, 2019, 16, 93-103.	3.1	5
66	Understanding the role of genetic variability in <i>LRRK2</i> in Indian population. Movement Disorders, 2019, 34, 496-505.	3.9	14
67	Quality Control Strategy for CRISPR-Cas9-Based Gene Editing Complicated by a Pseudogene. Frontiers in Genetics, 2019, 10, 1297.	2.3	5
68	Lateralisation in Parkinson disease. Cell and Tissue Research, 2018, 373, 297-312.	2.9	67
69	The genetic architecture of mitochondrial dysfunction in Parkinson's disease. Cell and Tissue Research, 2018, 373, 21-37.	2.9	131
70	Reply: No evidence for rare TRAP1 mutations influencing the risk of idiopathic Parkinson's disease. Brain, 2018, 141, e17-e17.	7.6	2
71	Behavioural outcomes of subthalamic stimulation and medical therapy versus medical therapy alone for Parkinson's disease with early motor complications (EARLYSTIM trial): secondary analysis of an open-label randomised trial. Lancet Neurology, The, 2018, 17, 223-231.	10.2	105
72	The Luxembourg Parkinson's Study: A Comprehensive Approach for Stratification and Early Diagnosis. Frontiers in Aging Neuroscience, 2018, 10, 326.	3.4	57

#	Article	IF	CITATIONS
73	Management of Parkinson's Disease 20 Years from Now: Towards Digital Health Pathways. Journal of Parkinson's Disease, 2018, 8, S85-S94.	2.8	46
74	Mitochondrial Morphology, Function and Homeostasis Are Impaired by Expression of an N-terminal Calpain Cleavage Fragment of Ataxin-3. Frontiers in Molecular Neuroscience, 2018, 11, 368.	2.9	32
75	Long-Term Effect of GPi-DBS in a Patient With Generalized Dystonia Due to GLUT1 Deficiency Syndrome. Frontiers in Neurology, 2018, 9, 381.	2.4	3
76	Involvement of the cerebellum in Parkinson disease and dementia with Lewy bodies. Annals of Neurology, 2017, 81, 898-903.	5.3	44
77	NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiology of Aging, 2017, 57, 247.e9-247.e13.	3.1	108
78	Classification of advanced stages of Parkinson's disease: translation into stratified treatments. Journal of Neural Transmission, 2017, 124, 1015-1027.	2.8	64
79	Levodopa-carbidopa intestinal gel in advanced Parkinson's: Final results of the GLORIA registry. Parkinsonism and Related Disorders, 2017, 45, 13-20.	2.2	149
80	The GBAP1 pseudogene acts as a ceRNA for the glucocerebrosidase gene GBA by sponging miR-22-3p. Scientific Reports, 2017, 7, 12702.	3.3	62
81	Metformin reverses TRAP1 mutation-associated alterations in mitochondrial function in Parkinson's disease. Brain, 2017, 140, 2444-2459.	7.6	76
82	Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease. Science, 2017, 357, 1255-1261.	12.6	600
83	An Observational Study of the Effect of Levodopa–Carbidopa Intestinal Gel on Activities of Daily Living and Quality of Life in Advanced Parkinson's Disease Patients. Advances in Therapy, 2017, 34, 1741-1752.	2.9	24
84	Evaluation of the interaction between LRRK2 and PARK16 loci in determining risk of Parkinson's disease: analysis of a large multicenter study. Neurobiology of Aging, 2017, 49, 217.e1-217.e4.	3.1	7
85	Effects of Subthalamic and Nigral Stimulation on Gait Kinematics in Parkinson's Disease. Frontiers in Neurology, 2017, 8, 543.	2.4	29
86	Comment on" Classification of Advanced Stages of Parkinson's Disease: Translation into Stratified Treatments― International Journal of Neurorehabilitation, 2017, 04, .	0.1	0
87	Aiming for Study Comparability in Parkinson's Disease: Proposal for a Modular Set of Biomarker Assessments to be Used in Longitudinal Studies. Frontiers in Aging Neuroscience, 2016, 8, 121.	3.4	16
88	Prodromal Markers in Parkinson's Disease: Limitations in Longitudinal Studies and Lessons Learned. Frontiers in Aging Neuroscience, 2016, 8, 147.	3.4	33
89	<scp>A</scp> lphaâ€synuclein gene variants may predict neurostimulation outcome. Movement Disorders, 2016, 31, 601-603.	3.9	15
90	Costâ€effectiveness of neurostimulation in Parkinson's disease with early motor complications. Movement Disorders, 2016, 31, 1183-1191.	3.9	39

#	Article	IF	CITATIONS
91	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
92	Mutation analyses and association studies to assess the role of the presenilin-associated rhomboid-like gene in Parkinson's disease. Neurobiology of Aging, 2016, 39, 217.e13-217.e15.	3.1	20
93	Cortical correlates of susceptibility to upper limb freezing in Parkinson's disease. Clinical Neurophysiology, 2016, 127, 2386-2393.	1.5	22
94	Loss of DJ-1 impairs antioxidant response by altered glutamine and serine metabolism. Neurobiology of Disease, 2016, 89, 112-125.	4.4	47
95	Mitochondrial defects and neurodegeneration in mice overexpressing wild-type or G399S mutant HtrA2. Human Molecular Genetics, 2016, 25, 459-471.	2.9	19
96	Advanced stages of PD: interventional therapies and related patient-centered care. Journal of Neural Transmission, 2016, 123, 31-43.	2.8	34
97	Neuromuscular correlates of subthalamic stimulation and upper limb freezing in Parkinson's disease. Clinical Neurophysiology, 2016, 127, 610-620.	1.5	21
98	Methods in Neuroepidemiology Characterization of European Longitudinal Cohort Studies in Parkinson's Disease - Report of the JPND Working Group BioLoC-PD. Neuroepidemiology, 2015, 45, 282-297.	2.3	23
99	Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson's disease. Brain, 2015, 138, 679-693.	7.6	66
100	Short- and long-term outcome of chronic pallidal neurostimulation in monogenic isolated dystonia. Neurology, 2015, 84, 895-903.	1.1	117
101	Clinically meaningful parameters of progression and long-term outcome of Parkinson disease: An international consensus statement. Parkinsonism and Related Disorders, 2015, 21, 675-682.	2.2	22
102	Long-term outcome of deep brain stimulation in fragile X-associated tremor/ataxia syndrome. Parkinsonism and Related Disorders, 2015, 21, 310-313.	2.2	26
103	Initiation and dose optimization for levodopa-carbidopa intestinal gel: Insights from phase 3 clinical trials. Parkinsonism and Related Disorders, 2015, 21, 742-748.	2.2	16
104	Large-scale assessment of polyglutamine repeat expansions in Parkinson disease. Neurology, 2015, 85, 1283-1292.	1.1	25
105	<i>EIF4G1</i> is neither a strong nor a common risk factor for Parkinson's disease: evidence from large European cohorts: Table1. Journal of Medical Genetics, 2015, 52, 37-41.	3.2	23
106	The COMT Val/Met Polymorphism Modulates Effects of tDCS on Response Inhibition. Brain Stimulation, 2015, 8, 283-288.	1.6	73
107	The NG2 Proteoglycan Protects Oligodendrocyte Precursor Cells against Oxidative Stress via Interaction with OMI/HtrA2. PLoS ONE, 2015, 10, e0137311.	2.5	26
108	From Genome-Wide Association Studies to Next-Generation Sequencing. JAMA Neurology, 2014, 71, 5.	9.0	17

#	Article	IF	CITATIONS
109	Alphaâ€synuclein repeat variants and survival in Parkinson's disease. Movement Disorders, 2014, 29, 1053-1057.	3.9	14
110	The protective effect of LRRK2 p.R1398H on risk of Parkinson's disease is independent of MAPT and SNCA variants. Neurobiology of Aging, 2014, 35, 266.e5-266.e14.	3.1	36
111	The subthalamic nucleus modulates the early phase of probabilistic classification learning. Experimental Brain Research, 2014, 232, 2255-2262.	1.5	2
112	Overexpression of synphilin-1 promotes clearance of soluble and misfolded alpha-synuclein without restoring the motor phenotype in aged A30P transgenic mice. Human Molecular Genetics, 2014, 23, 767-781.	2.9	20
113	Effects of transcranial direct current stimulation (tDCS) on executive functions: Influence of COMT Val/Met polymorphism. Cortex, 2013, 49, 1801-1807.	2.4	117
114	Populationâ€specific frequencies for <i>LRRK2</i> susceptibility variants in the genetic epidemiology of Parkinson's disease (GEOâ€PD) consortium. Movement Disorders, 2013, 28, 1740-1744.	3.9	30
115	Genetic Correction of a LRRK2 Mutation in Human iPSCs Links Parkinsonian Neurodegeneration to ERK-Dependent Changes in Gene Expression. Cell Stem Cell, 2013, 12, 354-367.	11.1	448
116	Nigral stimulation for resistant axial motor impairment in Parkinson's disease? A randomized controlled trial. Brain, 2013, 136, 2098-2108.	7.6	186
117	A novel heterozygous <i>OPA3</i> mutation located in the mitochondrial target sequence results in altered steady-state levels and fragmented mitochondrial network. Journal of Medical Genetics, 2013, 50, 848-858.	3.2	33
118	The hallmarks of <scp>P</scp> arkinson's disease. FEBS Journal, 2013, 280, 5981-5993.	4.7	214
119	Knockdown of Hsc70-5/mortalin Induces Loss of Synaptic Mitochondria in a Drosophila Parkinson's Disease Model. PLoS ONE, 2013, 8, e83714.	2.5	51
120	The Use of Primary Human Fibroblasts for Monitoring Mitochondrial Phenotypes in the Field of Parkinson's Disease. Journal of Visualized Experiments, 2012, , .	0.3	18
121	Long-term follow-up of subthalamic nucleus stimulation in glucocerebrosidase-associated Parkinson's disease. Journal of Neurology, 2012, 259, 1970-1972.	3.6	24
122	A multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants. Journal of Medical Genetics, 2012, 49, 721-726.	3.2	94
123	Large-scale replication and heterogeneity in Parkinson disease genetic loci. Neurology, 2012, 79, 659-667.	1.1	119
124	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
125	Loss of Mortalin Function in Parkinson's Disease-Supporting the Mitochondrial Pathway of Neurodegeneration. , 2012, , 159-177.		0
126	Subthalamic nucleus stimulation restores the efferent cortical drive to muscle in parallel to functional motor improvement. European Journal of Neuroscience, 2012, 35, 896-908.	2.6	16

#	Article	IF	CITATIONS
127	The modulation of Amyotrophic Lateral Sclerosis risk by Ataxin-2 intermediate polyglutamine expansions is a specific effect. Neurobiology of Disease, 2012, 45, 356-361.	4.4	66
128	Converging environmental and genetic pathways in the pathogenesis of Parkinson's disease. Journal of the Neurological Sciences, 2011, 306, 1-8.	0.6	52
129	A large-scale genetic association study to evaluate the contribution of Omi/HtrA2 (PARK13) to Parkinson's disease. Neurobiology of Aging, 2011, 32, 548.e9-548.e18.	3.1	56
130	Olfactory neuron-specific expression of A30P alpha-synuclein exacerbates dopamine deficiency and hyperactivity in a novel conditional model of early Parkinson's disease stages. Neurobiology of Disease, 2011, 44, 192-204.	4.4	28
131	Combined stimulation of the substantia nigra pars reticulata and the subthalamic nucleus is effective in hypokinetic gait disturbance in Parkinson's disease. Journal of Neurology, 2011, 258, 1183-1185.	3.6	46
132	Combined STN/SNr-DBS for the treatment of refractory gait disturbances in Parkinson's disease: study protocol for a randomized controlled trial. Trials, 2011, 12, 222.	1.6	18
133	Central oscillators in a patient with neuropathic tremor: Evidence from intraoperative local field potential recordings. Movement Disorders, 2011, 26, 323-327.	3.9	24
134	Independent and joint effects of the <i>MAPT</i> and <i>SNCA</i> genes in Parkinson disease. Annals of Neurology, 2011, 69, 778-792.	5.3	92
135	Transgenic overexpression of the alpha-synuclein interacting protein synphilin-1 leads to behavioral and neuropathological alterations in mice. Neurogenetics, 2010, 11, 107-120.	1.4	18
136	Periphilin is a novel interactor of synphilin-1, a protein implicated in Parkinson's disease. Neurogenetics, 2010, 11, 203-215.	1.4	2
137	Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1. Experimental Cell Research, 2010, 316, 1213-1224.	2.6	57
138	First appraisal of brain pathology owing to A30P mutant alphaâ€synuclein. Annals of Neurology, 2010, 67, 684-689.	5.3	91
139	Balance is the challenge – The impact of mitochondrial dynamics in Parkinson's disease. European Journal of Clinical Investigation, 2010, 40, 1048-1060.	3.4	40
140	Reduced Basal Autophagy and Impaired Mitochondrial Dynamics Due to Loss of Parkinson's Disease-Associated Protein DJ-1. PLoS ONE, 2010, 5, e9367.	2.5	319
141	Dissecting the role of the mitochondrial chaperone mortalin in Parkinson's disease: functional impact of disease-related variants on mitochondrial homeostasis. Human Molecular Genetics, 2010, 19, 4437-4452.	2.9	121
142	Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nature Genetics, 2009, 41, 1308-1312.	21.4	1,745
143	Further delineation of the association signal on chromosome 5 from the first whole genome association study in Parkinson's disease. Neurobiology of Aging, 2009, 30, 1706-1709.	3.1	1
144	A comprehensive genetic study of the proteasomal subunit S6 ATPase in German Parkinson's disease patients. Journal of Neural Transmission, 2008, 115, 1141-1148.	2.8	25

Rejko KrÜger

#	Article	IF	CITATIONS
145	Review: Familial Parkinson's disease – genetics, clinical phenotype and neuropathology in relation to the common sporadic form of the disease. Neuropathology and Applied Neurobiology, 2008, 34, 255-271.	3.2	105
146	LRRK2in Parkinson's disease – drawing the curtain of penetrance: a commentary. BMC Medicine, 2008, 6, 33.	5.5	22
147	Mitochondrial Protein Quality Control by the Proteasome Involves Ubiquitination and the Protease Omi. Journal of Biological Chemistry, 2008, 283, 12681-12685.	3.4	145
148	Acute parkinsonism with corresponding lesions in the basal ganglia after heroin abuse. Neurology, 2007, 68, 414-414.	1.1	20
149	The proteasomal subunit S6 ATPase is a novel synphilinâ€1 interacting protein—implications for Parkinson's disease. FASEB Journal, 2007, 21, 1759-1767.	0.5	48
150	Mitochondrial translation initiation factor 3 gene polymorphism associated with Parkinson's disease. Neuroscience Letters, 2007, 414, 126-129.	2.1	26
151	Loss-of-Function of Human PINK1 Results in Mitochondrial Pathology and Can Be Rescued by Parkin. Journal of Neuroscience, 2007, 27, 12413-12418.	3.6	466
152	Transcranial ultrasound in different monogenetic subtypes of Parkinson's disease. Journal of Neurology, 2007, 254, 613-616.	3.6	65
153	Collaborative Analysis of α-Synuclein Gene Promoter Variability and Parkinson Disease. JAMA - Journal of the American Medical Association, 2006, 296, 661.	7.4	467
154	Lack of replication of thirteen single-nucleotide polymorphisms implicated in Parkinson's disease: a large-scale international study. Lancet Neurology, The, 2006, 5, 917-923.	10.2	83
155	Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Human Molecular Genetics, 2005, 14, 2099-2111.	2.9	514
156	The role of synphilin-1 in synaptic function and protein degradation. Cell and Tissue Research, 2004, 318, 195-199.	2.9	23
157	Genes in familial parkinsonism and their role in sporadic Parkinson?s disease. Journal of Neurology, 2004, 251, VI/2-6.	3.6	9
158	UCHL1 is a Parkinson's disease susceptibility gene. Annals of Neurology, 2004, 55, 512-521.	5.3	227
159	Novel homozygous p.E64D mutation in DJ1 in early onset Parkinson disease (PARK7). Human Mutation, 2004, 24, 321-329.	2.5	117
160	Therapeutic strategies for Parkinson's disease based on data derived from genetic research. Journal of Neurology, 2003, 250, i3-i10.	3.6	4
161	Mutation analysis of the neurofilament M gene in Parkinson's disease. Neuroscience Letters, 2003, 351, 125-129.	2.1	28
162	Identification and functional characterization of a novel R621C mutation in the synphilin-1 gene in Parkinson's disease. Human Molecular Genetics, 2003, 12, 1223-1231.	2.9	124

#	Article	IF	CITATIONS
163	Haploinsufficiency at the Â-synuclein gene underlies phenotypic severity in familial Parkinson's disease. Brain, 2003, 126, 32-42.	7.6	43
164	PARK3, Ubiquitin Hydrolase-L1 and Other PD Loci. , 2003, , 315-323.		0
165	Parkinson's disease: one biochemical pathway to fit all genes?. Trends in Molecular Medicine, 2002, 8, 236-240.	6.7	68
166	14-3-3 protein is a component of Lewy bodies in Parkinson's disease—Mutation analysis and association studies of 14-3-3 eta. Molecular Brain Research, 2002, 108, 33-39.	2.3	53
167	Spectrum of phenotypes and genotypes in Parkinson's disease. Journal of Neurology, 2002, 249, 1-1.	3.6	10
168	Evaluation of the γ-synuclein gene in German Parkinson's disease patients. Neuroscience Letters, 2001, 310, 191-193.	2.1	16
169	Genetic analysis of the α2-macroglobulin gene in early-and late-onset Parkinson's disease. NeuroReport, 2000, 11, 2439-2442.	1.2	16
170	Mutation analysis and association studies of the UCHL1 gene in German Parkinson's disease patients. NeuroReport, 2000, 11, 2079-2082.	1.2	143
171	PCR/SSCP Detects Reliably and Efficiently DNA Sequence Variations in Large Scale Screening Projects. Combinatorial Chemistry and High Throughput Screening, 2000, 3, 211-218.	1.1	11
172	Increased susceptibility to sporadic Parkinson's disease by a certain combined ?-synuclein/apolipoprotein E genotype. Annals of Neurology, 1999, 45, 611-617.	5.3	273
173	AlaSOPro mutation in the gene encoding α-synuclein in Parkinson's disease. Nature Genetics, 1998, 18, 106-108.	21.4	3,711
174	Genetic dissection of familial Parkinson's disease. Trends in Molecular Medicine, 1998, 4, 438-444.	2.6	25