TomÃ;s GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9218944/publications.pdf Version: 2024-02-01

TOMÃIS CARCÃA

#	Article	IF	CITATIONS
1	The role of temperature profile during the pyrolysis of end-of-life-tyres in an industrially relevant conditions auger plant. Journal of Environmental Management, 2022, 317, 115323.	7.8	13
2	The promoter effect of Nb species on the catalytic performance of Ir-based catalysts for VOCs total oxidation. Journal of Environmental Chemical Engineering, 2022, 10, 108261.	6.7	2
3	Supported iridium catalysts for the total oxidation of short chain alkanes and their mixtures: Influence of the support. Chemical Engineering Journal, 2021, 417, 127999.	12.7	11
4	A pyrolysis process coupled to a catalytic cracking stage: A potential waste-to-energy solution for mattress foam waste. Waste Management, 2021, 120, 415-423.	7.4	9
5	Î ³ -valerolactone from levulinic acid and its esters: Substrate and reaction media determine the optimal catalyst. Applied Catalysis A: General, 2021, 623, 118276.	4.3	8
6	From laboratory scale to pilot plant: Evaluation of the catalytic co-pyrolysis of grape seeds and polystyrene wastes with CaO. Catalysis Today, 2021, 379, 87-95.	4.4	22
7	Highly Active Co3O4-Based Catalysts for Total Oxidation of Light C1–C3 Alkanes Prepared by a Simple Soft Chemistry Method: Effect of the Heat-Treatment Temperature and Mixture of Alkanes. Materials, 2021, 14, 7120.	2.9	7
8	A combined two-stage process of pyrolysis and catalytic cracking of municipal solid waste for the production of syngas and solid refuse-derived fuels. Waste Management, 2020, 101, 171-179.	7.4	59
9	Glycerol Selective Oxidation to Lactic Acid over AuPt Nanoparticles; Enhancing Reaction Selectivity and Understanding by Support Modification. ChemCatChem, 2020, 12, 3097-3107.	3.7	23
10	Application of Upgraded Drop-In Fuel Obtained from Biomass Pyrolysis in a Spark Ignition Engine. Energies, 2020, 13, 2089.	3.1	11
11	Low temperature conversion of levulinic acid into γ-valerolactone using Zn to generate hydrogen from water and nickel catalysts supported on sepiolite. RSC Advances, 2020, 10, 20395-20404.	3.6	7
12	Insights into the production of upgraded biofuels using Mgâ€loaded mesoporous ZSMâ€5 zeolites. ChemCatChem, 2020, 12, 5236-5249.	3.7	9
13	Properties and Combustion Characteristics of Bio-Oils from Catalytic Co-Pyrolysis of Grape Seeds, Polystyrene, and Waste Tires. Energy & Fuels, 2020, 34, 14190-14203.	5.1	13
14	Easy Method for the Transformation of Levulinic Acid into Gamma-Valerolactone Using a Nickel Catalyst Derived from Nanocasted Nickel Oxide. Materials, 2019, 12, 2918.	2.9	6
15	Carbon black recovery from waste tire pyrolysis by demineralization: Production and application in rubber compounding. Waste Management, 2019, 85, 574-584.	7.4	128
16	Green synthesis of cavity-containing manganese oxides with superior catalytic performance in toluene oxidation. Applied Catalysis A: General, 2019, 582, 117107.	4.3	8
17	The Key Role of Nanocasting in Goldâ€based Fe ₂ O ₃ Nanocasted Catalysts for Oxygen Activation at the Metalâ€support Interface. ChemCatChem, 2019, 11, 1915-1927.	3.7	13
18	Analysis of Soot from the Use of Butanol Blends in a Euro 6 Diesel Engine. Energy & Fuels, 2019, 33, 2265-2277.	5.1	21

#	Article	IF	CITATIONS
19	Size-activity relationship of iridium particles supported on silica for the total oxidation of volatile organic compounds (VOCs). Chemical Engineering Journal, 2019, 366, 100-111.	12.7	56
20	Ca-based Catalysts for the Production of High-Quality Bio-Oils from the Catalytic Co-Pyrolysis of Grape Seeds and Waste Tyres. Catalysts, 2019, 9, 992.	3.5	23
21	Drop-in biofuels from the co-pyrolysis of grape seeds and polystyrene. Chemical Engineering Journal, 2019, 377, 120246.	12.7	57
22	Photocatalytic Activity of Mesoporous α-Fe2O3 Synthesized via Soft Chemistry and Hard Template Methods for Degradation of Azo Dye Orange II. Catalysis Letters, 2018, 148, 1289-1295.	2.6	7
23	Understanding the role of Ti-rich domains in the stabilization of gold nanoparticles on mesoporous silica-based catalysts. Journal of Catalysis, 2018, 360, 187-200.	6.2	4
24	Prediction of elemental composition, water content and heating value of upgraded biofuel from the catalytic cracking of pyrolysis bio-oil vapors by infrared spectroscopy and partial least square regression models. Journal of Analytical and Applied Pyrolysis, 2018, 132, 102-110.	5.5	6
25	Kinetic study for the co-pyrolysis of lignocellulosic biomass and plastics using the distributed activation energy model. Energy, 2018, 165, 731-742.	8.8	82
26	Catalytic co-pyrolysis of grape seeds and waste tyres for the production of drop-in biofuels. Energy Conversion and Management, 2018, 171, 1202-1212.	9.2	76
27	Eco-Friendly Cavity-Containing Iron Oxides Prepared by Mild Routes as Very Efficient Catalysts for the Total Oxidation of VOCs. Materials, 2018, 11, 1387.	2.9	15
28	Low temperature total oxidation of toluene by bimetallic Au–Ir catalysts. Catalysis Science and Technology, 2017, 7, 2886-2896.	4.1	39
29	Determining Bio-Oil Composition via Chemometric Tools Based on Infrared Spectroscopy. ACS Sustainable Chemistry and Engineering, 2017, 5, 8710-8719.	6.7	10
30	Catalyst evaluation for high-purity H2 production by sorption-enhanced steam-methane reforming coupled to a Ca/Cu process. Journal of Power Sources, 2017, 363, 117-125.	7.8	23
31	Total Oxidation of Propane Using CeO2 and CuO-CeO2 Catalysts Prepared Using Templates of Different Nature. Catalysts, 2017, 7, 96.	3.5	39
32	An integrated process for the production of lignocellulosic biomass pyrolysis oils using calcined limestone as a heat carrier with catalytic properties. Fuel, 2016, 181, 430-437.	6.4	28
33	Promoting Deoxygenation of Bio-Oil by Metal-Loaded Hierarchical ZSM-5 Zeolites. ACS Sustainable Chemistry and Engineering, 2016, 4, 1653-1660.	6.7	126
34	Total oxidation of VOCs on mesoporous iron oxide catalysts: Soft chemistry route versus hard template method. Chemical Engineering Journal, 2016, 290, 273-281.	12.7	109
35	Porosity–Acidity Interplay in Hierarchical ZSMâ€5 Zeolites for Pyrolysis Oil Valorization to Aromatics. ChemSusChem, 2015, 8, 3283-3293.	6.8	105
36	The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. Applied Catalysis B: Environmental, 2015, 174-175, 403-412.	20.2	333

#	Article	IF	CITATIONS
37	Catalytic upgrading of biomass derived pyrolysis vapors over metal-loaded ZSM-5 zeolites: Effect of different metal cations onÂtheÂbio-oil final properties. Microporous and Mesoporous Materials, 2015, 209, 189-196.	4.4	185
38	High-Temperature Stable Gold Nanoparticle Catalysts for Application under Severe Conditions: The Role of TiO ₂ Nanodomains in Structure and Activity. ACS Catalysis, 2015, 5, 1078-1086.	11.2	34
39	Insights into the catalytic production of hydrogen from propane in the presence of oxygen: Cooperative presence of vanadium and gold catalysts. Fuel Processing Technology, 2015, 134, 290-296.	7.2	4
40	Study of a residential boiler under start-transient conditions using a tire pyrolysis liquid (TPL)/diesel fuel blend. Fuel, 2015, 158, 744-752.	6.4	27
41	Total oxidation of propane in vanadia-promoted platinum-alumina catalysts: Influence of the order of impregnation. Catalysis Today, 2015, 254, 12-20.	4.4	32
42	In-situ synthesis of hydrogen peroxide in tandem with selective oxidation reactions: A mini-review. Catalysis Today, 2015, 248, 115-127.	4.4	95
43	Enhanced H2O2 production over Au-rich bimetallic Au–Pd nanoparticles on ordered mesoporous carbons. Catalysis Today, 2015, 248, 48-57.	4.4	40
44	Production of upgraded bio-oils by biomass catalytic pyrolysis in an auger reactor using low cost materials. Fuel, 2015, 141, 17-22.	6.4	145
45	The Catalytic Oxidation of Hydrocarbon Volatile Organic Compounds. , 2014, , 51-90.		4
46	Bifunctional Cu/H-ZSM-5 zeolite with hierarchical porosity for hydrocarbon abatement under cold-start conditions. Applied Catalysis B: Environmental, 2014, 154-155, 161-170.	20.2	54
47	Performance and emissions of an automotive diesel engine using a tire pyrolysis liquid blend. Fuel, 2014, 115, 490-499.	6.4	88
48	Thermodynamic analysis for syngas production from volatiles released in waste tire pyrolysis. Energy Conversion and Management, 2014, 81, 338-353.	9.2	36
49	Optimizing the performance of catalytic traps for hydrocarbon abatement during the cold-start of a gasoline engine. Journal of Hazardous Materials, 2014, 279, 527-536.	12.4	23
50	Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts. Bioresource Technology, 2014, 162, 250-258.	9.6	185
51	Au deposited on CeO2 prepared by a nanocasting route: A high activity catalyst for CO oxidation. Journal of Catalysis, 2014, 317, 167-175.	6.2	34
52	Potential for using a tire pyrolysis liquid-diesel fuel blend in a light duty engine under transient operation. Applied Energy, 2014, 130, 437-446.	10.1	37
53	Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel. Fuel Processing Technology, 2014, 119, 263-271.	7.2	260
54	Shape-dependency activity of nanostructured CeO2 in the total oxidation of polycyclic aromatic hydrocarbons. Applied Catalysis B: Environmental, 2013, 132-133, 116-122.	20.2	158

#	Article	IF	CITATIONS
55	The different catalytic behaviour in the propane total oxidation of cobalt and manganese oxides prepared by a wet combustion procedure. Chemical Engineering Journal, 2013, 229, 547-558.	12.7	87
56	Abatement of hydrocarbons by acid ZSM-5 and BETA zeolites under cold-start conditions. Adsorption, 2013, 19, 357-365.	3.0	20
57	Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor. Journal of Hazardous Materials, 2013, 261, 637-645.	12.4	107
58	BETA Zeolite Thin Films Supported on Honeycomb Monoliths with Tunable Properties as Hydrocarbon Traps under Cold‧tart Conditions. ChemSusChem, 2013, 6, 1467-1477.	6.8	20
59	Study of nickel catalysts for hydrogen production in sorption enhanced reforming process. Journal of Power Sources, 2013, 242, 371-379.	7.8	14
60	Influence of the preparation method on the activity of ceria zirconia mixed oxides for naphthalene total oxidation. Applied Catalysis B: Environmental, 2013, 132-133, 98-106.	20.2	73
61	Waste tyre pyrolysis – A review. Renewable and Sustainable Energy Reviews, 2013, 23, 179-213.	16.4	623
62	Fuel Properties of Tire Pyrolysis Liquid and Its Blends with Diesel Fuel. Energy & Fuels, 2013, 27, 3296-3305.	5.1	77
63	Total oxidation of naphthalene using bulk manganese oxide catalysts. Applied Catalysis A: General, 2013, 450, 169-177.	4.3	49
64	CuH-ZSM-5 as Hydrocarbon Trap under Cold Start Conditions. Environmental Science & Technology, 2013, 47, 5851-5857.	10.0	29
65	Molecular simulation design of a multisite solid for the abatement of cold start emissions. Chemical Communications, 2012, 48, 6571.	4.1	15
66	Highly dispersed encapsulated AuPd nanoparticles on ordered mesoporous carbons for the direct synthesis of H2O2 from molecular oxygen and hydrogen. Chemical Communications, 2012, 48, 5316.	4.1	32
67	Application of a particle model to pyrolysis. Comparison of different feedstock: Plastic, tyre, coal and biomass. Fuel Processing Technology, 2012, 103, 1-8.	7.2	32
68	Oxygen defects: The key parameter controlling the activity and selectivity of mesoporous copper-doped ceria for the total oxidation of naphthalene. Applied Catalysis B: Environmental, 2012, 127, 77-88.	20.2	70
69	High activity mesoporous copper doped cerium oxide catalysts for the total oxidation of polyaromatic hydrocarbon pollutants. Chemical Communications, 2012, 48, 4704.	4.1	52
70	Effect of the aging time of PVP coated palladium nanoparticles colloidal suspensions on their catalytic activity in the preferential oxidation of CO. Catalysis Today, 2012, 187, 2-9.	4.4	33
71	Simulation and optimization of tyre-based steam activated carbons production for gas-phase polycyclic aromatic hydrocarbons abatement. Chemical Engineering Journal, 2012, 187, 123-132.	12.7	16
72	Total oxidation of VOCs on Au nanoparticles anchored on Co doped mesoporous UVM-7 silica. Chemical Engineering Journal, 2012, 187, 391-400.	12.7	44

#	Article	IF	CITATIONS
73	Synergy between tungsten and palladium supported on titania for the catalytic total oxidation of propane. Journal of Catalysis, 2012, 285, 103-114.	6.2	71
74	Modelling the heat and mass transfers of propane onto a ZSM-5 zeolite. Separation and Purification Technology, 2012, 86, 127-136.	7.9	21
75	The significance of the order of impregnation on the activity of vanadia promoted palladium-alumina catalysts for propane total oxidation. Catalysis Science and Technology, 2011, 1, 1367.	4.1	18
76	Valorisation of forestry waste by pyrolysis in an auger reactor. Waste Management, 2011, 31, 1339-1349.	7.4	96
77	Promoting the activity and selectivity of high surface area Ni–Ce–O mixed oxides by gold deposition for VOC catalytic combustion. Chemical Engineering Journal, 2011, 175, 271-278.	12.7	64
78	The Influence of Platinum Addition on Nano-Crystalline Ceria Catalysts for the Total Oxidation of Naphthalene a Model Polycyclic Aromatic Hydrocarbon. Catalysis Letters, 2011, 141, 1732-1738.	2.6	14
79	The effect of gold addition on the catalytic performance of copper manganese oxide catalysts for the total oxidation of propane. Applied Catalysis B: Environmental, 2011, 101, 388-396.	20.2	47
80	Deep oxidation of pollutants using gold deposited on a high surface area cobalt oxide prepared by a nanocasting route. Journal of Hazardous Materials, 2011, 187, 544-552.	12.4	80
81	Recent Solutions for the Abatement of Hydrocarbon Emissions During the Cold Start of Light Vehicles. Recent Patents on Chemical Engineering, 2011, 4, 36-52.	0.5	3
82	Modelling the Breakthrough Curves Obtained from the Adsorption of Propene onto Microporous Inorganic Solids. Adsorption Science and Technology, 2010, 28, 761-775.	3.2	7
83	Screening of different zeolites and silicoaluminophosphates for the retention of propene under cold start conditions. Microporous and Mesoporous Materials, 2010, 130, 239-247.	4.4	53
84	Total Oxidation of Naphthalene Using Mesoporous CeO2 Catalysts Synthesized by Nanocasting from Two Dimensional SBA-15 and Three Dimensional KIT-6 and MCM-48 Silica Templates. Catalysis Letters, 2010, 134, 110-117.	2.6	21
85	Deep oxidation of volatile organic compounds using ordered cobalt oxides prepared by a nanocasting route. Applied Catalysis A: General, 2010, 386, 16-27.	4.3	164
86	Valorisation of waste tyre by pyrolysis in a moving bed reactor. Waste Management, 2010, 30, 1220-1224.	7.4	134
87	Waste tyre pyrolysis: Modelling of a moving bed reactor. Waste Management, 2010, 30, 2530-2536.	7.4	23
88	The catalytic performance of mesoporous cerium oxides prepared through a nanocasting route for the total oxidation of naphthalene. Applied Catalysis B: Environmental, 2010, 93, 395-405.	20.2	62
89	Experimental and simulated propene isotherms on porous solids. Applied Surface Science, 2010, 256, 5292-5297.	6.1	14
90	Stable anchoring of dispersed gold nanoparticles on hierarchic porous silica-based materials. Journal of Materials Chemistry, 2010, 20, 6780.	6.7	19

#	Article	IF	CITATIONS
91	Ceria and Gold/Ceria Catalysts for the Abatement of Polycyclic Aromatic Hydrocarbons: An InÂSitu DRIFTS Study. Topics in Catalysis, 2009, 52, 492-500.	2.8	29
92	Total oxidation of naphthalene with high selectivity using a ceria catalyst prepared by a combustion method employing ethylene glycol. Journal of Hazardous Materials, 2009, 171, 393-399.	12.4	24
93	TAP reactor study of the deep oxidation of propane using cobalt oxide and gold-containing cobalt oxide catalysts. Applied Catalysis A: General, 2009, 365, 222-230.	4.3	50
94	Deep oxidation of propane using palladium–titania catalysts modified by niobium. Applied Catalysis A: General, 2008, 350, 63-70.	4.3	35
95	Total oxidation of propane using nanocrystalline cobalt oxide and supported cobalt oxide catalysts. Applied Catalysis B: Environmental, 2008, 84, 176-184.	20.2	221
96	The influence of cerium to urea preparation ratio of nanocrystalline ceria catalysts for the total oxidation of naphthalene. Catalysis Today, 2008, 137, 373-378.	4.4	19
97	Application of the distributed activation energy model to blends devolatilisation. Chemical Engineering Journal, 2008, 142, 87-94.	12.7	17
98	Waste Tire Pyrolysis: Comparison between Fixed Bed Reactor and Moving Bed Reactor. Industrial & Engineering Chemistry Research, 2008, 47, 4029-4033.	3.7	98
99	Temperature Swing Adsorption of Polycyclic Aromatic Hydrocarbons on Activated Carbons. Industrial & Engineering Chemistry Research, 2007, 46, 8193-8198.	3.7	13
100	Influence of preparation conditions of nano-crystalline ceria catalysts on the total oxidation of naphthalene, a model polycyclic aromatic hydrocarbon. Applied Catalysis B: Environmental, 2007, 76, 248-256.	20.2	68
101	Emissions from the combustion of gas-phase products at tyre pyrolysis. Journal of Analytical and Applied Pyrolysis, 2007, 79, 210-214.	5.5	72
102	Complete oxidation of short chain alkanes using a nanocrystalline cobalt oxide catalyst. Catalysis Letters, 2007, 116, 116-121.	2.6	55
103	Steam activation of tyre pyrolytic carbon black: Kinetic study in a thermobalance. Chemical Engineering Journal, 2007, 126, 79-85.	12.7	48
104	Modeling of Activated Carbon Production from Lignite. Energy & amp; Fuels, 2006, 20, 2627-2631.	5.1	13
105	Nanocrystalline cobalt oxide: a catalyst for selective alkane oxidation under ambient conditions. Chemical Communications, 2006, , 3417-3419.	4.1	68
106	Selective oxidation of CO in the presence of H2, H2O and CO2utilising Au/α-Fe2O3catalysts for use in fuel cells. Journal of Materials Chemistry, 2006, 16, 199-208.	6.7	92
107	Activation of Pyrolytic Lignite Char with CO2. Kinetic Study. Energy & amp; Fuels, 2006, 20, 11-16.	5.1	11
108	Supported gold catalysts for the total oxidation of alkanes and carbon monoxide. Applied Catalysis A: General, 2006, 312, 67-76.	4.3	134

#	Article	IF	CITATIONS
109	Molybdenum–vanadium supported on mesoporous alumina catalysts for the oxidative dehydrogenation of ethane. Catalysis Today, 2006, 117, 228-233.	4.4	78
110	Naphthalene total oxidation over metal oxide catalysts. Applied Catalysis B: Environmental, 2006, 66, 92-99.	20.2	95
111	Naphthalene oxidation over vanadium-modified Pt catalysts supported on γ-Al2O3. Catalysis Letters, 2006, 110, 125-128.	2.6	27
112	Study of the use of paper manufacturing waste in plaster composite mixtures. Building and Environment, 2006, 41, 821-827.	6.9	21
113	Total oxidation of volatile organic compounds by vanadium promoted palladium-titania catalysts: Comparison of aromatic and polyaromatic compounds. Applied Catalysis B: Environmental, 2006, 62, 66-76.	20.2	82
114	Deep oxidation of light alkanes over titania-supported palladium/vanadium catalysts. Journal of Catalysis, 2005, 229, 1-11.	6.2	70
115	Nano-crystalline Ceria Catalysts for the Abatement of Polycyclic Aromatic Hydrocarbons. Catalysis Letters, 2005, 105, 183-189.	2.6	60
116	Production and Application of Activated Carbons Made from Waste Tire. Industrial & Engineering Chemistry Research, 2005, 44, 7228-7233.	3.7	48
117	Selective oxidation of CO in the presence of H2, H2O and CO2via gold for use in fuel cells. Chemical Communications, 2005, , 3385.	4.1	146
118	Levels of selected metals in ambient air PM10 in an urban site of Zaragoza (Spain). Environmental Research, 2005, 99, 58-67.	7.5	114
119	WHERE ARE THE LIMITS OF THE GAS-PHASE FLUORESCENCE ON THE POLYCYCLIC AROMATIC COMPOUND ANALYSIS?. Polycyclic Aromatic Compounds, 2004, 24, 325-332.	2.6	5
120	The Oxidative Destruction of Hydrocarbon Volatile Organic Compounds Using Palladium–Vanadia–Titania Catalysts. Catalysis Letters, 2004, 97, 99-103.	2.6	31
121	Improvement of the catalytic performance of CuMnOx catalysts for CO oxidation by the addition of Au. New Journal of Chemistry, 2004, 28, 708.	2.8	40
122	Development of Efficient Adsorbent Materials for PAH Cleaning from AFBC Hot Gas. Energy & Fuels, 2004, 18, 202-208.	5.1	17
123	Kinetic Model Comparison for Waste Tire Char Reaction with CO2. Industrial & Engineering Chemistry Research, 2004, 43, 7768-7773.	3.7	35
124	Spatial and temporal PAH concentrations in Zaragoza, Spain. Science of the Total Environment, 2003, 307, 111-124.	8.0	99
125	Study of the Adsorption of Polyaromatic Hydrocarbon Binary Mixtures on Carbon Materials by Gas-Phase Fluorescence Detection. Energy & Fuels, 2003, 17, 669-676.	5.1	17
126	Measurements of Polycyclic Aromatic Hydrocarbon Adsorption on Activated Carbons at Very Low Concentrations. Industrial & Engineering Chemistry Research, 2003, 42, 155-161.	3.7	36

#	Article	IF	CITATIONS
127	PAH Mixture Removal from Hot Gas by Porous Carbons. From Model Compounds to Real Conditions. Industrial & Engineering Chemistry Research, 2003, 42, 5280-5286.	3.7	21
128	Relationship Between Ecotoxicity and PAH Content in Coal Combustion Waste Samples. Polycyclic Aromatic Compounds, 2002, 22, 571-578.	2.6	2
129	Polyaromatic Hydrocarbons in Flue Gases from Waste Tire Combustion. Polycyclic Aromatic Compounds, 2002, 22, 561-570.	2.6	8
130	Limestone Influence on PAH Emissions from Coal AFBC. Catalytic or/and Adsorption Effect?. Studies in Surface Science and Catalysis, 2002, , 403-409.	1.5	0
131	Phenanthrene Asorption on a Carbonaceous Material: Moisture and CO2 Influence. Studies in Surface Science and Catalysis, 2002, 144, 283-290.	1.5	1
132	Moisture Effects on the Phenanthrene Adsorption Capacity by Carbonaceous Materials. Energy & Fuels, 2002, 16, 205-210.	5.1	26
133	Three-Ring PAH Removal from Waste Hot Gas by Sorbents:Â Influence of the Sorbent Characteristics. Environmental Science & Technology, 2002, 36, 1821-1826.	10.0	32
134	Effects of CO2 on the Phenanthrene Adsorption Capacity of Carbonaceous Materials. Energy & Fuels, 2002, 16, 510-516.	5.1	14
135	Removal of Naphthalene, Phenanthrene, and Pyrene by Sorbents from Hot Gas. Environmental Science & Technology, 2001, 35, 2395-2400.	10.0	61
136	Assessment of Schemes for the Processing of Organic Residues from the Interior Car Decoration Industry. Industrial & amp; Engineering Chemistry Research, 2001, 40, 1119-1124.	3.7	2
137	Benzo(a)pyrene, Benzo(a)anthracene, and Dibenzo(a,h)anthracene Emissions from Coal and Waste Tire Energy Ceneration at Atmospheric Fluidized Bed Combustion (AFBC). Environmental Science & Technology, 2001, 35, 2645-2649.	10.0	34
138	Effects of Limestone on Polycyclic Aromatic Hydrocarbon Emissions during Coal Atmospheric Fluidized Bed Combustion. Energy & Fuels, 2001, 15, 1469-1474.	5.1	23
139	Assessement of Phenanthrene Removal from Hot Gas by Porous Carbons. Energy & Fuels, 2001, 15, 1-7.	5.1	39
140	Atmospheric Environmental Impact from New Energy Systems Generation. Polycyclic Aromatic Compounds, 2000, 18, 1-11.	2.6	5
141	Toxic organic emissions from coal combustion. Fuel Processing Technology, 2000, 67, 1-10.	7.2	65
142	PAH presence in oils and tars from coal–tyre coprocessing. Fuel Processing Technology, 2000, 62, 53-63.	7.2	21
143	Optimisation of scrap automotive tyres recycling into valuable liquid fuels. Resources, Conservation and Recycling, 2000, 29, 263-272.	10.8	46
144	Fluidized Bed Combustion (FBC) of Fossil and Nonfossil Fuels. A Comparative Study. Energy & Fuels, 2000, 14, 275-281.	5.1	37

#	Article	IF	CITATIONS
145	Polyaromatic Environmental Impact in Coalâ^'Tire Blend Atmospheric Fluidized Bed (AFB) Combustion. Energy & Fuels, 2000, 14, 164-168.	5.1	31
146	Influence of Process Variables on Oils from Tire Pyrolysis and Hydropyrolysis in a Swept Fixed Bed Reactor. Energy & Fuels, 2000, 14, 739-744.	5.1	110
147	Influence on PAH emissions of the air flow in AFB coal combustion. Fuel, 1999, 78, 1553-1557.	6.4	50
148	Combustion of High Calorific Value Waste Material:Â Organic Atmospheric Pollution. Environmental Science & Technology, 1999, 33, 4155-4158.	10.0	59
149	Polycyclic Aromatic Hydrocarbons and Organic Matter Associated to Particulate Matter Emitted from Atmospheric Fluidized Bed Coal Combustion. Environmental Science & (amp; Technology, 1999, 33, 3177-3184.	10.0	70
150	Assessment of PAH emissions as a function of coal combustion variables in fluidised bed. 2. Air excess percentage. Fuel, 1998, 77, 1513-1516.	6.4	47
151	Evaluation of Synergy in Tire Rubberâ^'Coal Coprocessing. Industrial & Engineering Chemistry Research, 1998, 37, 3545-3550.	3.7	13
152	Kinetic Study for the Co-Pyrolysis of Lignocellulosic Biomass and Plastics Using the Distributed Activation Energy Model. , 0, , .		0