
Sidney R Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9218804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measurement of carbon nanotube–polymer interfacial strength. Applied Physics Letters, 2003, 82, 4140-4142.	3.3	498
2	Detachment of nanotubes from a polymer matrix. Applied Physics Letters, 2002, 81, 3873-3875.	3.3	358
3	Spin Specific Electron Conduction through DNA Oligomers. Nano Letters, 2011, 11, 4652-4655.	9.1	323
4	Helicenes—A New Class of Organic Spin Filter. Advanced Materials, 2016, 28, 1957-1962.	21.0	319
5	On the mechanical behavior of WS2 nanotubes under axial tension and compression. Proceedings of the United States of America, 2006, 103, 523-528.	7.1	263
6	Nanoelectrochemical Patterning of Monolayer Surfaces: Toward Spatially Defined Self-Assembly of Nanostructures. Advanced Materials, 1999, 11, 55-61.	21.0	253
7	Static and Dynamic Wetting Measurements of Single Carbon Nanotubes. Physical Review Letters, 2004, 92, 186103.	7.8	240
8	"Constructive Nanolithography― Inert Monolayers as Patternable Templates for In-Situ Nanofabrication of Metal-Semiconductor-Organic Surface Structures—A Generic Approach. Advanced Materials, 2000, 12, 725-731.	21.0	228
9	Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix. Composites Science and Technology, 2004, 64, 2283-2289.	7.8	222
10	Constructive Nanolithography: Site-Defined Silver Self-Assembly on Nanoelectrochemically Patterned Monolayer Templates. Advanced Materials, 2000, 12, 424-429.	21.0	186
11	Force microscopy with a bidirectional capacitance sensor. Review of Scientific Instruments, 1990, 61, 2296-2308.	1.3	179
12	Metal Nanoparticles, Nanowires, and Contact Electrodes Self-Assembled on Patterned Monolayer Templates—A Bottom-up Chemical Approach. Advanced Materials, 2002, 14, 1036.	21.0	178
13	How Polycrystalline Devices Can Outperform Single-Crystal Ones: Thin Film CdTe/CdS Solar Cells. Advanced Materials, 2004, 16, 879-883.	21.0	176
14	Understanding the Beneficial Role of Grain Boundaries in Polycrystalline Solar Cells from Single-Grain-Boundary Scanning Probe Microscopy. Advanced Functional Materials, 2006, 16, 649-660.	14.9	165
15	Thermally induced disorder in organized organic monolayers on solid substrates. The Journal of Physical Chemistry, 1986, 90, 3054-3056.	2.9	155
16	Fracture Transitions at a Carbon-Nanotube/Polymer Interface. Advanced Materials, 2006, 18, 83-87.	21.0	155
17	A Secreted Disulfide Catalyst Controls Extracellular Matrix Composition and Function. Science, 2013, 341, 74-76.	12.6	140
18	Atomic scale friction of a diamond tip on diamond (100) and (111) surfaces. Journal of Applied Physics, 1993, 73, 163-167.	2.5	136

#	Article	IF	CITATIONS
19	Torsional electromechanical quantum oscillations in carbon nanotubes. Nature Nanotechnology, 2006, 1, 36-41.	31.5	133
20	WS2 nanotubes as tips in scanning probe microscopy. Applied Physics Letters, 1999, 75, 4025-4027.	3.3	119
21	Mechanical behavior of individual WS2 nanotubes. Journal of Materials Research, 2004, 19, 454-459.	2.6	117
22	Insights into the Structure and Domain Flexibility of Full-Length Pro-Matrix Metalloproteinase-9/Gelatinase B. Structure, 2007, 15, 1227-1236.	3.3	113
23	Sea Urchin Tooth Design: An "Allâ€Calcite―Polycrystalline Reinforced Fiber Composite for Grinding Rocks. Advanced Materials, 2008, 20, 1555-1559.	21.0	111
24	A micropipette force probe suitable for nearâ€field scanning optical microscopy. Review of Scientific Instruments, 1992, 63, 4061-4065.	1.3	102
25	Intercalation of Inorganic Fullerene-like Structures Yields Photosensitive Films and New Tips for Scanning Probe Microscopy. Journal of the American Chemical Society, 1997, 119, 2693-2698.	13.7	102
26	Direct evidence for grain-boundary depletion in polycrystalline CdTe from nanoscale-resolved measurements. Applied Physics Letters, 2003, 82, 556-558.	3.3	98
27	Stochastic strength of nanotubes: An appraisal of available data. Composites Science and Technology, 2005, 65, 2380-2384.	7.8	97
28	Self-Assembly at the Airâ^'Water Interface. In-Situ Preparation of Thin Films of Metal Ion Grid Architectures. Journal of the American Chemical Society, 1998, 120, 4850-4860.	13.7	95
29	Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review. Beilstein Journal of Nanotechnology, 2013, 4, 815-833.	2.8	90
30	Translational energy transfer from molecules and atoms to adsorbed organic monolayers of long-chain amphiphiles. Physical Review Letters, 1987, 58, 1208-1211.	7.8	89
31	Young's modulus of peritubular and intertubular human dentin by nano-indentation tests. Journal of Structural Biology, 2011, 174, 23-30.	2.8	86
32	Room-temperature conductance spectroscopy of CdSe quantum dots using a modified scanning force microscope. Physical Review B, 1995, 52, R17017-R17020.	3.2	84
33	Unusually Large Young's Moduli of Amino Acid Molecular Crystals. Angewandte Chemie - International Edition, 2015, 54, 13566-13570.	13.8	83
34	Nanomechanics of a Au–Ir contact using a bidirectional atomic force microscope. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1990, 8, 3449-3454.	2.1	77
35	Branched Coordination Multilayers on Gold. Journal of the American Chemical Society, 2005, 127, 17877-17887.	13.7	72
36	Self‧harpening Mechanism of the Sea Urchin Tooth. Advanced Functional Materials, 2011, 21, 682-690.	14.9	72

#	Article	IF	CITATIONS
37	Direct Visualization of Protease Action on Collagen Triple Helical Structure. PLoS ONE, 2010, 5, e11043.	2.5	70
38	Structure dependent spin selectivity in electron transport through oligopeptides. Journal of Chemical Physics, 2017, 146, .	3.0	69
39	High-Resolution Lateral Differentiation Using a Macroscopic Probe:Â XPS of Organic Monolayers on Composite Auâ^'SiO2Surfaces. Journal of the American Chemical Society, 2000, 122, 4959-4962.	13.7	68
40	Sequence Dependence of Charge Transport Properties of DNA. Journal of Physical Chemistry B, 2006, 110, 8910-8913.	2.6	63
41	Temperature and Force Dependence of Nanoscale Electron Transport <i>via</i> the Cu Protein Azurin. ACS Nano, 2012, 6, 10816-10824.	14.6	63
42	The tribological behavior of type II textured MX2 (M=Mo, W; X=S, Se) films. Thin Solid Films, 1998, 324, 190-197.	1.8	62
43	Scanning tunneling microscopy study of WS2 nanotubes. Physical Chemistry Chemical Physics, 2002, 4, 2095-2098.	2.8	61
44	Electrical properties of short DNA oligomers characterized by conducting atomic force microscopy. Physical Chemistry Chemical Physics, 2004, 6, 4459.	2.8	59
45	Self-Assembly of Light-Harvesting Crystalline Nanosheets in Aqueous Media. ACS Nano, 2013, 7, 3547-3556.	14.6	58
46	External and internal wetting of carbon nanotubes with organic liquids. Physical Review B, 2005, 71, .	3.2	57
47	Characterization of Geoinspired and Synthetic Chrysotile Nanotubes by Atomic Force Microscopy and Transmission Electron Microscopy. Advanced Functional Materials, 2007, 17, 3332-3338.	14.9	57
48	Oriented Crystalline Monolayers and Bilayers of 2×2 Silver(I) Grid Architectures at the Air-Solution Interface: Their Assembly and Crystal Structure Elucidation. Chemistry - A European Journal, 2000, 6, 725-734.	3.3	55
49	Multifunctional, micropipette based force cantilevers for scanned probe microscopy. Applied Physics Letters, 1994, 65, 648-650.	3.3	50
50	Crystalline Cyclic Peptide Nanotubes at Interfaces. Journal of the American Chemical Society, 1999, 121, 1186-1191.	13.7	49
51	Fullerene-Like (IF) Nb <i>_x</i> Mo ₁ _{<i>_x</i>S₂ Nanoparticles. Journal of the American Chemical Society, 2007, 129, 12549-12562.}	13.7	49
52	Use of AFM in bio-related systems. Current Opinion in Colloid and Interface Science, 2008, 13, 316-325.	7.4	47
53	Nanometer-scale electronic and microstructural properties of grain boundaries in Cu(In,Ga)Se2. Thin Solid Films, 2011, 519, 7341-7346.	1.8	46
54	Self-Aggregation of .alpha.,.omegaAlkanediols into 3-D Crystallites As Studied at Interfaces: The System of .alpha.,.omegaDocosanediol. The Journal of Physical Chemistry, 1994, 98, 4970-4972.	2.9	45

#	Article	IF	CITATIONS
55	Nanocompression of individual multilayered polyhedral nanoparticles. Nanotechnology, 2010, 21, 365705.	2.6	45
56	20S proteasomes secreted by the malaria parasite promote its growth. Nature Communications, 2021, 12, 1172.	12.8	45
57	Electronically active layers and interfaces in polycrystalline devices: Cross-section mapping of CdS/CdTe solar cells. Applied Physics Letters, 2003, 83, 4924-4926.	3.3	43
58	Metal–Organic Microstructures: From Rectangular to Stellated and Interpenetrating Polyhedra. Journal of the American Chemical Society, 2015, 137, 226-231.	13.7	43
59	Simulation and correction of geometric distortions in scanning Kelvin probe microscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 1051-1055.	2.1	42
60	The kinetic isotope effect for carbon and oxygen in the reaction CO + OH. International Journal of Chemical Kinetics, 1980, 12, 935-948.	1.6	41
61	Oriented Crystalline Thin Films of Tetracosanedioic Acid and Its Metal Salts at the Air-Aqueous Solution Interface. Advanced Materials, 1998, 10, 117-121.	21.0	40
62	An international round-robin calibration protocol for nanoindentation measurements. Micron, 2012, 43, 215-222.	2.2	40
63	Growth of crystalline WSe2 and WS2 films on amorphous substrate by reactive (Van der Waals) rheotaxy. Solar Energy Materials and Solar Cells, 1996, 44, 457-470.	6.2	39
64	Nanoindentation of osteonal bone lamellae. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 9, 198-206.	3.1	39
65	Pyroelectricity in Highly Stressed Quasi-Amorphous Thin Films. Advanced Materials, 2003, 15, 1826-1828.	21.0	38
66	Dislocation structure and hardness of surface layers under friction of copper in different lubricant conditions. Acta Materialia, 2011, 59, 342-348.	7.9	38
67	Osteonal lamellae elementary units: Lamellar microstructure, curvature and mechanical properties. Acta Biomaterialia, 2013, 9, 5956-5962.	8.3	38
68	Novel poly(3-hydroxybutyrate) nanocomposites containing WS2 inorganic nanotubes with improved thermal, mechanical and tribological properties. Materials Chemistry and Physics, 2014, 147, 273-284.	4.0	38
69	Layer-by-Layer Assembly of Ordinary and Composite Coordination Multilayers. Langmuir, 2004, 20, 10727-10733.	3.5	37
70	The Role of Point Defects in the Mechanical Behavior of Doped Ceria Probed by Nanoindentation. Advanced Functional Materials, 2013, 23, 6076-6081.	14.9	37
71	Biological fabrication of cellulose fibers with tailored properties. Science, 2017, 357, 1118-1122.	12.6	35
72	Patterned Organosilane Monolayers as Lyophobicâ^'Lyophilic Guiding Templates in Surface Self-Assembly: Monolayer Self-Assembly versus Wetting-Driven Self-Assembly. Langmuir, 2009, 25, 13984-14001.	3.5	34

#	Article	IF	CITATIONS
73	Chiral and SHG-Active Metal–Organic Frameworks Formed in Solution and on Surfaces: Uniformity, Morphology Control, Oriented Growth, and Postassembly Functionalization. Journal of the American Chemical Society, 2020, 142, 14210-14221.	13.7	34
74	Rotational and stateâ€resolved translational distributions of NO scattered from organized amphiphilic monolayers. Journal of Chemical Physics, 1988, 88, 2757-2763.	3.0	33
75	Microscopic Investigation of Shear in Multiwalled Nanotube Deformation. Journal of Physical Chemistry C, 2007, 111, 8432-8436.	3.1	33
76	Influence of Cd content on the room temperature mechanical properties of Cd-doped ceria. Scripta Materialia, 2012, 66, 155-158.	5.2	33
77	Gold Nanoparticles as Surface Defect Probes for WS ₂ Nanostructures. Journal of Physical Chemistry Letters, 2010, 1, 540-543.	4.6	30
78	Effect of the Substrate Morphology on the Structure of Adsorbed Ice. Journal of Physical Chemistry B, 1997, 101, 5172-5176.	2.6	29
79	In situ SFM study of 2D-polyaniline surface-confined enzymatic polymerization. Journal of Materials Chemistry, 2006, 16, 4044.	6.7	29
80	Atomic Force Microscopy: Opening the Teaching Laboratory to the Nanoworld. Journal of Chemical Education, 2010, 87, 1290-1293.	2.3	29
81	Solid-State Electron Transport via the Protein Azurin is Temperature-Independent Down to 4 K. Journal of Physical Chemistry Letters, 2020, 11, 144-151.	4.6	28
82	Laboratory Insights into the Diel Cycle of Optical and Chemical Transformations of Biomass Burning Brown Carbon Aerosols. Environmental Science & Technology, 2020, 54, 11827-11837.	10.0	28
83	Alleviating fatigue and failure of NiTi endodontic files by a coating containing inorganic fullerene-like WS ₂ nanoparticles. Journal of Materials Research, 2011, 26, 1234-1242.	2.6	26
84	Microanalysis surface studies and photoemission properties of CsI photocathodes. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 367, 337-341.	1.6	25
85	Inhibition of self-aggregation of ?,?-docosanediol into 3D Crystallites by ?Tailor-Made? amphiphilic auxiliaries. Advanced Materials, 1994, 6, 956-959.	21.0	24
86	Title is missing!. Journal of Sol-Gel Science and Technology, 2001, 20, 153-160.	2.4	24
87	Effect of chemical treatments on nm-scale electrical characteristics of polycrystalline thin film Cu(In,Ga)Se2 surfaces. Solar Energy Materials and Solar Cells, 2014, 120, 500-505.	6.2	24
88	Nanoscale Electron Transport and Photodynamics Enhancement in Lipid-Depleted Bacteriorhodopsin Monomers. ACS Nano, 2014, 8, 7714-7722.	14.6	24
89	Transistor configuration yields energy level control in protein-based junctions. Nanoscale, 2018, 10, 21712-21720.	5.6	24
90	Ga Composition Dictates Macroscopic Photovoltaic and Nanoscopic Electrical Characteristics of Cu(In \$_{1-X}\$Ga\$_X\$)Se \$_2\$ Thin Films via Grain-Boundary-Type Inversion. IEEE Journal of Photovoltaics, 2012, 2, 191-195.	2.5	23

#	Article	IF	CITATIONS
91	Friction, wear and structure of Cu samples in the lubricated steady friction state. Tribology International, 2012, 46, 154-160.	5.9	22
92	Nanotribology of novel metal dichalcogenides. Applied Surface Science, 1999, 144-145, 603-607.	6.1	21
93	Charge Transfer between a Gold Substrate and CdS Nanoparticles Assembled in Hybrid Organicâ°'Inorganic Films. Journal of Physical Chemistry B, 2003, 107, 4245-4252.	2.6	21
94	Electro hemomechanical Contribution to Mechanical Actuation in Gdâ€Đoped Ceria Membranes. Advanced Materials Interfaces, 2019, 6, 1801592.	3.7	20
95	Nanoscale Shear and Indentation Measurements in Transcrystalline α-Isotactic Polypropylene. Macromolecules, 2001, 34, 1252-1257.	4.8	18
96	Direct monitoring of opto-mechanical switching of self-assembled monolayer films containing the azobenzene group. Beilstein Journal of Nanotechnology, 2011, 2, 834-844.	2.8	18
97	Radial compression studies of WS2 nanotubes in the elastic regime. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	1.2	18
98	The role of convolutional neural networks in scanning probe microscopy: a review. Beilstein Journal of Nanotechnology, 2021, 12, 878-901.	2.8	18
99	Malaria parasites release vesicle subpopulations with signatures of different destinations. EMBO Reports, 2022, 23, .	4.5	18
100	Stepped Polymer Morphology Induced by a Carbon Nanotube Tip. Nano Letters, 2004, 4, 1439-1443.	9.1	17
101	Laser-induced aligned self-assembly on water surfaces. Journal of Chemical Physics, 2009, 130, 144704.	3.0	17
102	An evaluation of the use of the atomic force microscope for studies in nanomechanics. Ultramicroscopy, 1992, 42-44, 66-72.	1.9	16
103	Protein nanofibril design via manipulation of hydrogen bonds. Communications Chemistry, 2021, 4, .	4.5	16
104	Anisotropic nanoindentation of transcrystalline polypropylene by scanning force microscope using blade-like tips. Applied Physics Letters, 1999, 74, 2966-2968.	3.3	15
105	Photoinduced Deprotection and ZnO Patterning of Hydroxyl-Terminated Siloxane-Based Monolayers. Journal of Physical Chemistry B, 2005, 109, 14144-14153.	2.6	15
106	Oxygen vacancy ordering and viscoelastic mechanical properties of doped ceria ceramics. Scripta Materialia, 2019, 163, 19-23.	5.2	15
107	Spontaneous Assembly in Organic Thin Films Spread on Aqueous Subphase: A Scanning Force Microscope (SFM) Study. Israel Journal of Chemistry, 1996, 36, 97-110.	2.3	14
108	A Composite GoldSilicon Oxide Surface for Mesoscopic Patterning. Journal of Physical Chemistry B, 2003, 107, 5540-5546.	2.6	14

#	Article	IF	CITATIONS
109	AFM Investigation of Mechanical Properties of Dentin. Israel Journal of Chemistry, 2008, 48, 65-72.	2.3	14
110	Experimental, finite element, and density-functional theory study of inorganic nanotube compression. Applied Physics Letters, 2011, 98, 081908.	3.3	14
111	Diameter-dependent wetting of tungsten disulfide nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13624-13629.	7.1	14
112	Role of fly ash in catalytic oxidation of sulfur(IV) slurries. Environmental Science & Technology, 1981, 15, 1498-1502.	10.0	13
113	Fabrication of sub-μm bipolar transistor structures by scanning probe microscopy. Applied Physics Letters, 1998, 73, 1868-1870.	3.3	13
114	Allâ€5olidâ€5tate Electroâ€Chemoâ€Mechanical Actuator Operating at Room Temperature. Advanced Functional Materials, 2021, 31, 2006712.	14.9	13
115	Electronic effects of ion mobility in semiconductors: Mixed electronic–ionic behavior and device creation in Si:Li. Journal of Applied Physics, 1996, 80, 2749-2762.	2.5	12
116	Kinetics of interaction of HIV fusion protein (gp41) with lipid membranes studied by real-time AFM imaging. Ultramicroscopy, 2010, 110, 694-700.	1.9	12
117	Selfâ€assembled twoâ€dimensional porous network in aqueous solution based on perylene diimide phenylacetylene oligomer. Polymers for Advanced Technologies, 2011, 22, 133-138.	3.2	12
118	Electrodeposition of CdS quantum dots and their optoelectronic characterization by photoelectrochemical and scanning probe spectroscopies. Superlattices and Microstructures, 1999, 25, 601-613.	3.1	11
119	Non-crystalline pyroelectric BaTiO3 thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 109, 167-169.	3.5	11
120	Adsorptionâ€Induced Magnetization of PbS Selfâ€Assembled Nanoparticles on GaAs. Advanced Materials, 2008, 20, 2552-2555.	21.0	11
121	Nanoindentation measurements and mechanical testing of as-soldered and aged Sn–0.7Cu lead-free miniature joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4014-4020.	5.6	11
122	Interfacial halogen bonding probed using force spectroscopy. Chemical Communications, 2013, 49, 3531.	4.1	11
123	A novel experimental method for the local mechanical testing of human coronal dentin. Dental Materials, 2010, 26, 179-184.	3.5	10
124	Chemical compositional non-uniformity and its effects on CIGS solar cell performance at the nm-scale. Solar Energy Materials and Solar Cells, 2012, 98, 78-82.	6.2	10
125	Microstructure and nanohardness of Ag and Ni under friction in boundary lubrication. Wear, 2018, 404-405, 62-70.	3.1	10
126	CHROMIUM-RICH COATINGS WITH WS ₂ NANOPARTICLES CONTAINING FULLERENE-LIKE STRUCTURE. Nano, 2011, 06, 313-324.	1.0	9

#	Article	IF	CITATIONS
127	Semiconductor quantum dot–inorganic nanotube hybrids. Physical Chemistry Chemical Physics, 2012, 14, 4271.	2.8	9
128	Decoration of Inorganic Nanostructures by Metallic Nanoparticles to Induce Fluorescence, Enhance Solubility, and Tune Band Gap. Journal of Physical Chemistry C, 2018, 122, 6748-6759.	3.1	9
129	Trivalent Dopant Size Influences Electrostrictive Strain in Ceria Solid Solutions. ACS Applied Materials & Interfaces, 2021, 13, 20269-20276.	8.0	9
130	Dihedral Angle at Solid/Liquid-Polymer Interfaces Determined by Atomic Force Microscopy. Langmuir, 1997, 13, 6360-6362.	3.5	7
131	Nanomechanics of Biomaterials – from Cells to Shells. Israel Journal of Chemistry, 2020, 60, 1171-1184.	2.3	7
132	Energy distribution between spin-orbit states in NO scattered from organized amphiphilic monolayers. Chemical Physics Letters, 1988, 152, 269-273.	2.6	6
133	Scanning tunneling microscopy of single dye molecules on GaAs(110) surfaces. Surface Science, 2005, 583, 297-309.	1.9	6
134	Zirconium vacuum arc operation in a mixture of Ar and O2 gases: Ar effect on the arcing characteristics, deposition rate and coating properties. Surface and Coatings Technology, 2012, 206, 4417-4424.	4.8	6
135	Oxide Surfaces with Tunable Stiffness. Journal of Physical Chemistry C, 2013, 117, 22232-22239.	3.1	6
136	A nanometric cushion for enhancing scratch and wear resistance of hard films. Beilstein Journal of Nanotechnology, 2014, 5, 1005-1015.	2.8	6
137	The gizzard plates in the Cephalaspidean gastropod Philine quadripartita: Analysis of structure and function. Quaternary International, 2015, 390, 4-14.	1.5	6
138	Investigation of no scattering from organic monolayers: Spin-orbit state and vibrational state population distributions. Chemical Physics, 1989, 134, 119-126.	1.9	5
139	Tubular Hybrids: A Nanoparticle—Molecular Network. Langmuir, 2018, 34, 2464-2470.	3.5	5
140	Self-assembly at solid surfaces. Beilstein Journal of Nanotechnology, 2011, 2, 824-825.	2.8	4
141	Engineered-membranes: A novel concept for clustering of native lipid bilayers. Journal of Colloid and Interface Science, 2012, 388, 300-305.	9.4	4
142	Poly(L-lactic acid) Reinforced with Hydroxyapatite and Tungsten Disulfide Nanotubes. Polymers, 2021, 13, 3851.	4.5	4
143	Measurement of Micromechanical Properties Using Atomic Force Microscope with Capacitative. Materials Research Society Symposia Proceedings, 1989, 153, 307.	0.1	3
144	Insights on uniaxial compression of WS2 inorganic fullerenes: A finite element study. Journal of Materials Research, 2012, 27, 161-166.	2.6	3

#	Article	IF	CITATIONS
145	Doping of Fullereneâ€Like MoS 2 Nanoparticles with Minute Amounts of Niobium. Particle and Particle Systems Characterization, 2018, 35, 1700165.	2.3	3
146	Metallic Nanocrystal Ripening on Inorganic Surfaces. ACS Omega, 2018, 3, 6533-6539.	3.5	3
147	Control over size, shape, and photonics of self-assembled organic nanocrystals. Beilstein Journal of Organic Chemistry, 2021, 17, 42-51.	2.2	3
148	The effect of adsorbed oxygen on the surface potential of n-GaAs(110). Journal of Chemical Physics, 2005, 123, 064705.	3.0	2
149	New Deposition Technique for Metal Films Containing Inorganic Fullereneâ€Like (IF) Nanoparticles. ChemPhysChem, 2013, 14, 2125-2131.	2.1	2
150	Noncovalent Bonding Caught in Action: From Amorphous to Cocrystalline Molecular Thin Films. ACS Nano, 2021, 15, 14643-14652.	14.6	2
151	Compressive Response of Dentin Micro-Pillars. Solid Mechanics and Its Applications, 2009, , 187-197.	0.2	2
152	Crystalline Corrugation in Multilayer Films on Aqueous Subphases. Helvetica Chimica Acta, 2003, 86, 2711-2725.	1.6	1
153	Carbon nanotube surface chemistry and its effects on interfacial nanomechanics. Materials Research Society Symposia Proceedings, 2004, 858, 260.	0.1	1
154	Surface characteristics and wetting behavior of carbon nanotubes. Materials Research Society Symposia Proceedings, 2004, 858, 209.	0.1	1
155	Electron Flow Through Molecular Structures. , 2007, , 715-745.		1
156	SPM Probing of Interfacial Strengths of Individual Carbon Nanotubes in a Polymer Matrix. AlP Conference Proceedings, 2003, , .	0.4	0
157	Investigating Individual Carbon Nanotube/Polymer Interfaces with Scanning Probe Microscopy. Nanoscience and Technology, 2007, , 287-323.	1.5	0