A Nick Vamivakas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9217805/publications.pdf

Version: 2024-02-01

85 papers

3,936 citations

33 h-index 61 g-index

86 all docs 86 docs citations

86 times ranked 4978 citing authors

#	Article	IF	Citations
1	Temperature and time stability of process-induced strain engineering on 2D materials. Journal of Applied Physics, 2022, 131, .	2.5	5
2	Chemically Tunable Aspect Ratio Control and Laser Refrigeration of Hexagonal Sodium Yttrium Fluoride Upconverting Materials. Crystal Growth and Design, 2022, 22, 3605-3612.	3.0	4
3	Excited-state spin-resonance spectroscopy of V\$\${}_{{{{\{\{\{\{\{\{m\{B\}\}\}\}\}\}\}}^{-}\}}}}\$ defect centers in hexagonal boron nitride. Nature Communications, 2022, 13, .	12.8	21
4	Antiferromagnetic proximity coupling between semiconductor quantum emitters in WSe2 and van der Waals ferromagnets. Nanoscale, 2021, 13, 832-841.	5. 6	9
5	Wide-Field Magnetic and Thermal Imaging of Electric Currents Using NVâ^' Centers in Nanodiamond Ensembles. , 2021, , .		1
6	Site-Controlled and Optically Accessible Single Spins in van der Waals Heterostructures. , 2021, , .		0
7	Coherence effects on estimating two-point separation. Optica, 2021, 8, 243.	9.3	23
8	Confocal super-resolution microscopy based on a spatial mode sorter. Optics Express, 2021, 29, 11784.	3.4	13
9	Exciton-Trion Polaritons in Doped Two-Dimensional Semiconductors. Physical Review Letters, 2021, 126, 127402.	7.8	15
10	Metaform optics: Bridging nanophotonics and freeform optics. Science Advances, 2021, 7, .	10.3	50
11	Molecular Polaritons Generated from Strong Coupling between CdSe Nanoplatelets and a Dielectric Optical Cavity. Journal of Physical Chemistry Letters, 2021, 12, 5030-5038.	4.6	18
12	Anomalous spatial coherence changes in radiation and scattering. Optics Express, 2021, 29, 21300.	3.4	1
13	Propagation of Gaussian Schell-model beams in modulated graded-index media. Optics Express, 2021, 29, 21240.	3.4	6
14	Experimental demonstration of superresolution of partially coherent light sources using parity sorting. Optics Express, 2021, 29, 22034.	3.4	27
15	Structure and dispersion of exciton-trion-polaritons in two-dimensional materials: Experiments and theory. Physical Review Research, 2021, 3, .	3.6	6
16	Laser refrigeration of optically levitated sodium yttrium fluoride nanocrystals. Optics Letters, 2021, 46, 3797.	3.3	10
17	The effects of substitutional Fe-doping on magnetism in MoS ₂ and WS ₂ monolayers. Nanotechnology, 2021, 32, 095708.	2.6	18
18	Optomechanics with levitated particles. Reports on Progress in Physics, 2020, 83, 026401.	20.1	155

#	Article	IF	Citations
19	Electric field tuning of strain-induced quantum emitters in WSe2. AIP Advances, 2020, 10, .	1.3	11
20	Spectral and spatial isolation of single tungsten diselenide quantum emitters using hexagonal boron nitride wrinkles. APL Photonics, 2020, 5, 096105.	5.7	7
21	Observation of site-controlled localized charged excitons in Crl3/WSe2 heterostructures. Nature Communications, 2020, 11, 5502.	12.8	23
22	Modal Majorana Sphere and Hidden Symmetries of Structured-Gaussian Beams. Physical Review Letters, 2020, 125, 123903.	7.8	19
23	Large barrier InAs quantum dots with efficient room temperature photon emission at telecom wavelengths. Applied Physics Letters, 2020, 116, .	3.3	4
24	Enabling room temperature ferromagnetism in monolayer MoS2 via in situ iron-doping. Nature Communications, 2020, 11, 2034.	12.8	112
25	Quantification and observation of genuine three-party coherence: A solution based on classical optics. Physical Review A, 2020, 102, .	2.5	10
26	Turning off quantum duality. Physical Review Research, 2020, 2, .	3.6	38
27	Strain tuning of the emission axis of quantum emitters in an atomically thin semiconductor. Optica, 2020, 7, 580.	9.3	13
28	A Fourier processor for partially coherent fields. OSA Continuum, 2020, 3, 2843.	1.8	3
29	Higher order correlations in a levitated nanoparticle phonon laser. Optics Express, 2020, 28, 4234.	3.4	3
30	Majorana Representation and Hidden Symmetries of Structured-Gaussian Beams. , 2020, , .		0
31	Challenges in the Path Toward a Scalable Silicon Photonics Implementation of Deep Neural Networks. IEEE Journal of Quantum Electronics, 2019, 55, 1-10.	1.9	3
32	Advances in quantum light emission from 2D materials. Nanophotonics, 2019, 8, 2017-2032.	6.0	74
33	Electrical manipulation of the fine-structure splitting of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi><mml:mn>2<td>l:m8.2<td>nl:ផាsub></td></td></mml:mn></mml:msub></mml:math>	l:m 8.2 <td>nl:ផាsub></td>	nl :ផា sub>
34	Do remote boundary conditions affect photodetection?. Journal of Modern Optics, 2019, 66, 1116-1123.	1.3	2
35	An optical tweezer phonon laser. Nature Photonics, 2019, 13, 402-405.	31.4	70
36	Room-temperature valley coherence in a polaritonic system. Nature Communications, 2019, 10, 1513.	12.8	36

#	Article	IF	CITATIONS
37	Terahertz Time-Domain Spectroscopy of Graphene Nanoflakes Embedded in Polymer Matrix. Applied Sciences (Switzerland), 2019, 9, 391.	2.5	15
38	Mechanically tunable focusing metamirror in the visible. Optics Express, 2019, 27, 15194.	3.4	23
39	Electrically tunable valley polarization and valley coherence in monolayer WSeÂ ₂ embedded in a van der Waals heterostructure. Optical Materials Express, 2019, 9, 1479.	3.0	22
40	See-through reflective metasurface diffraction grating. Optical Materials Express, 2019, 9, 4070.	3.0	6
41	Quantum-limited estimation of the axial separation of two incoherent point sources. Optica, 2019, 6, 534.	9.3	64
42	Rabi oscillations and resonance fluorescence from a single hexagonal boron nitride quantum emitter. Optica, 2019, 6, 542.	9.3	57
43	Polarization coherence theorem: reply. Optica, 2019, 6, 831.	9.3	5
44	Higher order correlations in a levitated nanoparticle phonon laser. , 2019, , .		0
45	Mie particle Phonon Laser. , 2019, , .		0
46	Material platforms for spin-based photonic quantum technologies. Nature Reviews Materials, 2018, 3, 38-51.	48.7	453
47	3D Localized Trions in Monolayer WSe ₂ in a Charge Tunable van der Waals Heterostructure. Nano Letters, 2018, 18, 2859-2863.	9.1	36
48	Anomalous dispersion of microcavity trion-polaritons. Nature Physics, 2018, 14, 130-133.	16.7	48
49	Entanglement limits duality and vice versa. Optica, 2018, 5, 942.	9.3	67
50	Long-term efficiency preservation for gradient phase metasurface diffraction gratings in the visible. Optical Materials Express, 2018, 8, 2125.	3.0	5
51	Phase retrieval in generalized optical interferometry systems. Optics Express, 2018, 26, 2191.	3.4	6
52	Interferometric spatial mode analyzer with a bucket detector. Optics Express, 2018, 26, 8719.	3.4	6
53	Measuring Geometric Phase without Interferometry. Physical Review Letters, 2018, 120, 233602.	7.8	26
54	Polarization-switchable holograms based on efficient, broadband multifunctional metasurfaces in the visible regime. Optics Express, 2018, 26, 30678.	3.4	13

#	Article	IF	CITATIONS
55	Quantum-Confined Stark Effect of Individual Defects in a van der Waals Heterostructure. Nano Letters, 2017, 17, 2253-2258.	9.1	81
56	Basis-neutral Hilbert-space analyzers. Scientific Reports, 2017, 7, 44995.	3.3	13
57	Polarization coherence theorem. Optica, 2017, 4, 1113.	9.3	48
58	Coherent control of a single nitrogen-vacancy center spin in optically levitated nanodiamond. Journal of the Optical Society of America B: Optical Physics, 2017, 34, C31.	2.1	27
59	Quantum model of cooling and force sensing with an optically trapped nanoparticle. Optica, 2016, 3, 318.	9.3	49
60	Graphene mediated Stark shifting of quantum dot energy levels. Applied Physics Letters, 2016, 108, 211905.	3.3	4
61	Coherence Constraints and the Last Hidden Optical Coherence. Physical Review Letters, 2016, 117, 153901.	7.8	55
62	Localized emission from defects in MoSe_2 layers. Optical Materials Express, 2016, 6, 2081.	3.0	55
63	Levitated Optomechanics. Optics and Photonics News, 2016, 27, 42.	0.5	5
64	Nano-optomechanics with optically levitated nanoparticles. Contemporary Physics, 2015, 56, 48-62.	1.8	39
65	Visible metasurfaces and ruled diffraction gratings: a comparison. Optical Materials Express, 2015, 5, 2895.	3.0	15
66	Tip-enhanced Raman mapping of local strain in graphene. Nanotechnology, 2015, 26, 175702.	2.6	62
67	Direct On-Chip Optical Plasmon Detection with an Atomically Thin Semiconductor. Nano Letters, 2015, 15, 5477-5481.	9.1	40
68	Direct and Scalable Deposition of Atomically Thin Low-Noise MoS ₂ Membranes on Apertures. ACS Nano, 2015, 9, 7352-7359.	14.6	79
69	Voltage-controlled quantum light from an atomically thin semiconductor. Nature Nanotechnology, 2015, 10, 507-511.	31.5	500
70	Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond. Nature Photonics, 2015, 9, 653-657.	31.4	119
71	Optical antenna enhanced graphene photodetector. Applied Physics Letters, 2014, 105, .	3.3	38
72	Integrated nanophotonics based on nanowire plasmons and atomically thin material. Optica, 2014, 1, 149.	9.3	68

#	Article	IF	CITATIONS
73	Nanoscale Fluorescence Lifetime Imaging of an Optical Antenna with a Single Diamond NV Center. Nano Letters, 2013, 13, 3807-3811.	9.1	85
74	Observation of nitrogen vacancy photoluminescence from an optically levitated nanodiamond. Optics Letters, 2013, 38, 2976.	3.3	81
75	Spectral tunability of a plasmonic antenna with a dielectric nanocrystal. Optics Express, 2011, 19, 18175.	3.4	22
76	Nanoscale Optical Electrometer. Physical Review Letters, 2011, 107, 166802.	7.8	45
77	Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence. Nature, 2010, 467, 297-300.	27.8	133
78	Photons and (artificial) atoms: an overview of optical spectroscopy techniques on quantum dots. Contemporary Physics, 2010, 51, 17-36.	1.8	9
79	Highly polarized self-assembled chains of single layer InP/(In,Ga)P quantum dots. Applied Physics Letters, 2010, 97, 253113.	3.3	11
80	Spin-resolved quantum-dot resonance fluorescence. Nature Physics, 2009, 5, 198-202.	16.7	251
81	Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization. Nature Physics, 2009, 5, 758-763.	16.7	160
82	Single-dot optical emission from ultralow density well-isolated InP quantum dots. Applied Physics Letters, 2008, 93, 143111.	3.3	30
83	Phase-sensitive detection of dipole radiation in a fiber-based high numerical aperture optical system. Optics Letters, 2007, 32, 970.	3.3	8
84	Strong Extinction of a Far-Field Laser Beam by a Single Quantum Dot. Nano Letters, 2007, 7, 2892-2896.	9.1	98
85	Tunable Resonant Raman Scattering From Singly Resonant Single Wall Carbon Nanotubes. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1083-1090.	2.9	11