Carolyn A Fairbanks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9217656/publications.pdf

Version: 2024-02-01

47 papers 2,032 citations

304743 22 h-index 254184 43 g-index

47 all docs

47 docs citations

47 times ranked

2344 citing authors

#	Article	IF	CITATIONS
1	Central Nervous System Distribution of an Opioid Agonist Combination with Synergistic Activity. Journal of Pharmacology and Experimental Therapeutics, 2022, 380, 34-46.	2.5	2
2	Targeting the somatosensory system with AAV9 and AAV2retro viral vectors. PLoS ONE, 2022, 17, e0264938.	2.5	9
3	Strategically Substituted Agmatine Analogs Reduce Neuropathic Pain and Show Improved Pharmacokinetics Compared to Agmatine. FASEB Journal, 2022, 36, .	0.5	O
4	Agmatine requires GluN2B-containing NMDA receptors to inhibit the development of neuropathic pain. Molecular Pain, 2021, 17, 174480692110291.	2.1	9
5	Biodistribution of Adeno-Associated Virus Serotype 5 Viral Vectors Following Intrathecal Injection. Molecular Pharmaceutics, 2021, 18, 3741-3749.	4.6	5
6	Sustained-release buprenorphine induces acute opioid tolerance in the mouse. European Journal of Pharmacology, 2020, 885, 173330.	3.5	5
7	Detailed Method for Intrathecal Delivery of Gene Therapeutics by Direct Lumbar Puncture in Mice. Methods in Molecular Biology, 2019, 1937, 305-312.	0.9	9
8	AAV-Mediated Gene Delivery to the Enteric Nervous System by Intracolonic Injection. Methods in Molecular Biology, 2019, 1950, 407-415.	0.9	6
9	AAV-Mediated Gene Delivery to the Spinal Cord by Intrathecal Injection. Methods in Molecular Biology, 2019, 1950, 199-207.	0.9	4
10	The Study of Pain in Rats and Mice. Comparative Medicine, 2019, 69, 555-570.	1.0	29
11	Defining and Managing Pain in Stroke and Traumatic Brain Injury Research. Comparative Medicine, 2019, 69, 510-519.	1.0	6
12	Agmatine preferentially antagonizes GluN2B-containing <i> N </i> > methyl- <scp> d </scp> -aspartate receptors in spinal cord. Journal of Neurophysiology, 2019, 121, 662-671.	1.8	9
13	Involvement of the VGF-derived peptide TLQP-62 in nerve injury–induced hypersensitivity and spinal neuroplasticity. Pain, 2018, 159, 1802-1813.	4.2	9
14	Prevention of Neurocognitive Deficiency in Mucopolysaccharidosis Type II Mice by Central Nervous System–Directed, AAV9-Mediated Iduronate Sulfatase Gene Transfer. Human Gene Therapy, 2017, 28, 626-638.	2.7	38
15	Complement 3a receptor in dorsal horn microglia mediates pronociceptive neuropeptide signaling. Glia, 2017, 65, 1976-1989.	4.9	30
16	Bivalent ligand that activates mu opioid receptor and antagonizes mGluR5 receptor reduces neuropathic pain in mice. Pain, 2017, 158, 2431-2441.	4.2	23
17	Current Gene Therapy using Viral Vectors for Chronic Pain. Molecular Pain, 2015, 11, s12990-015-0018.	2.1	55
18	Neurobiological studies of chronic pain and analgesia: Rationale and refinements. European Journal of Pharmacology, 2015, 759, 169-181.	3.5	9

#	Article	IF	CITATIONS
19	Dual allosteric modulation of opioid antinociceptive potency by î±2A-adrenoceptors. Neuropharmacology, 2015, 99, 285-300.	4.1	16
20	Morphine and Clonidine Combination Therapy Improves Therapeutic Window in Mice: Synergy in Antinociceptive but Not in Sedative or Cardiovascular Effects. PLoS ONE, 2014, 9, e109903.	2.5	41
21	Biodistribution of adeno-associated virus serotype 9 (AAV9) vector after intrathecal and intravenous delivery in mouse. Frontiers in Neuroanatomy, 2014, 8, 42.	1.7	137
22	Supraspinal gene transfer by intrathecal adeno-associated virus serotype 5. Frontiers in Neuroanatomy, 2014, 8, 66.	1.7	20
23	The VGF-derived peptide TLQP-21 contributes to inflammatory and nerve injury-induced hypersensitivity. Pain, 2014, 155, 1229-1237.	4.2	39
24	Agmatine: clinical applications after 100 years in translation. Drug Discovery Today, 2013, 18, 880-893.	6.4	207
25	Protein Kinase Cϵ Is Required for Spinal Analgesic Synergy between Delta Opioid and Alpha-2A Adrenergic Receptor Agonist Pairs. Journal of Neuroscience, 2013, 33, 13538-13546.	3.6	16
26	Effect of Chronic Pain on Fentanyl Self-Administration in Mice. PLoS ONE, 2013, 8, e79239.	2.5	35
27	OCT2 and MATE1 Provide Bidirectional Agmatine Transport. Molecular Pharmaceutics, 2011, 8, 133-142.	4.6	54
28	Differential Adeno-Associated Virus Mediated Gene Transfer to Sensory Neurons following Intrathecal Delivery by Direct Lumbar Puncture. Molecular Pain, 2010, 6, 1744-8069-6-31.	2.1	99
29	Clonidine and Dexmedetomidine Produce Antinociceptive Synergy in Mouse Spinal Cord. Anesthesiology, 2009, 110, 638-647.	2.5	29
30	Immunoneutralization of Agmatine Sensitizes Mice to $\hat{1}/4$ -Opioid Receptor Tolerance. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 539-546.	2.5	15
31	Pharmacological profiles of alpha 2 adrenergic receptor agonists identified using genetically altered mice and isobolographic analysis., 2009, 123, 224-238.		86
32	Supraspinally-administered agmatine attenuates the development of oral fentanyl self-administration. European Journal of Pharmacology, 2008, 587, 135-140.	3.5	29
33	ST91 [2-(2,6-Diethylphenylamino)-2-imidazoline Hydrochloride]-Mediated Spinal Antinociception and Synergy with Opioids Persists in the Absence of Functional α-2A- or α-2C-Adrenergic Receptors. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 899-906.	2.5	19
34	Agmatine transport into spinal nerve terminals is modulated by polyamine analogs. Journal of Neurochemistry, 2007, 100, 132-141.	3.9	18
35	Potassium- and capsaicin-induced release of agmatine from spinal nerve terminals. Journal of Neurochemistry, 2007, 102, 1738-1748.	3.9	17
36	Release of tritiated agmatine from spinal synaptosomes. NeuroReport, 2006, 17, 13-17.	1.2	22

#	Article	IF	CITATIONS
37	Supraspinally administered agmatine prevents the development of supraspinal morphine analgesic tolerance. European Journal of Pharmacology, 2006, 536, 133-137.	3.5	14
38	Pharmacodynamic and Pharmacokinetic Studies of Agmatine after Spinal Administration in the Mouse. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 1226-1233.	2.5	54
39	Neuropharmacokinetic and Dynamic Studies of Agmatine (Decarboxylated Arginine). Annals of the New York Academy of Sciences, 2003, 1009, 82-105.	3.8	37
40	Spinal delivery of analgesics in experimental models of pain and analgesia. Advanced Drug Delivery Reviews, 2003, 55, 1007-1041.	13.7	191
41	Effects of agmatine, interleukin-10, and cyclosporin on spontaneous pain behavior after excitotoxic spinal cord injury in rats. Journal of Pain, 2003, 4, 129-140.	1.4	58
42	DPDPE-UK14,304 synergy is retained in mu opioid receptor knockout mice. Pain, 2003, 104, 209-217.	4.2	27
43	$\hat{l}\pm 2C$ -Adrenergic Receptors Mediate Spinal Analgesia and Adrenergic-Opioid Synergy. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 282-290.	2.5	165
44	Agmatine improves locomotor function and reduces tissue damage following spinal cord injury. NeuroReport, 2000, 11, 3203-3207.	1,2	69
45	Spinal plasticity of acute opioid tolerance. Journal of Biomedical Science, 2000, 7, 200-212.	7.0	27
46	Moxonidine, a selective imidazoline/ $\hat{l}\pm 2$ adrenergic receptor agonist, synergizes with morphine and deltorphin II to inhibit substance P-induced behavior in mice. Pain, 2000, 84, 13-20.	4.2	40
47	Spinal analgesic actions of the new endogenous opioid peptides endomorphin-1 and -2. NeuroReport, 1997, 8, 3131-3135.	1.2	194