
Grant Dewson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9217212/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Therapeutic targeting of mitophagy in Parkinson's disease. Biochemical Society Transactions, 2022, 50, 783-797.	1.6	20
2	Activation mechanism of PINK1. Nature, 2022, 602, 328-335.	13.7	59
3	Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities. Cell Death and Differentiation, 2021, 28, 570-590.	5.0	197
4	A new crystal form of GABARAPL2. Acta Crystallographica Section F, Structural Biology Communications, 2021, 77, 140-147.	0.4	1
5	Too much death can kill you: inhibiting intrinsic apoptosis to treat disease. EMBO Journal, 2021, 40, e107341.	3.5	26
6	Structure of detergent-activated BAK dimers derived from the inert monomer. Molecular Cell, 2021, 81, 2123-2134.e5.	4.5	26
7	Dynamic reconfiguration of proâ€apoptotic BAK on membranes. EMBO Journal, 2021, 40, e107237.	3.5	20
8	VDAC2 and the BCL-2 family of proteins. Biochemical Society Transactions, 2021, 49, 2787-2795.	1.6	23
9	EBV BCL-2 homologue BHRF1 drives chemoresistance and lymphomagenesis by inhibiting multiple cellular pro-apoptotic proteins. Cell Death and Differentiation, 2020, 27, 1554-1568.	5.0	35
10	Mechanism and inhibition of the papainâ€like protease, PLpro, of SARSâ€CoVâ€2. EMBO Journal, 2020, 39, e106275.	3.5	330
11	BAK core dimers bind lipids and can be bridged by them. Nature Structural and Molecular Biology, 2020, 27, 1024-1031.	3.6	49
12	MCL-1 is essential for survival but dispensable for metabolic fitness of FOXP3+ regulatory T cells. Cell Death and Differentiation, 2020, 27, 3374-3385.	5.0	2
13	Robust autoactivation for apoptosis by BAK but not BAX highlights BAK as an important therapeutic target. Cell Death and Disease, 2020, 11, 268.	2.7	27
14	A small molecule interacts with VDAC2 to block mouse BAK-driven apoptosis. Nature Chemical Biology, 2019, 15, 1057-1066.	3.9	30
15	BAX Activation: Mutations Near Its Proposed Non-canonical BH3 Binding Site Reveal Allosteric Changes Controlling Mitochondrial Association. Cell Reports, 2019, 27, 359-373.e6.	2.9	31
16	Parkin inhibits BAK and BAX apoptotic function by distinct mechanisms during mitophagy. EMBO Journal, 2019, 38, .	3.5	66
17	Mcl-1 and Bcl-xL sequestration of Bak confers differential resistance to BH3-only proteins. Cell Death and Differentiation, 2018, 25, 721-734.	5.0	44
18	BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science, 2018, 359, .	6.0	581

#	Article	IF	CITATIONS
19	How do thymic epithelial cells die?. Cell Death and Differentiation, 2018, 25, 1002-1004.	5.0	17
20	VDAC2 enables BAX to mediate apoptosis and limit tumor development. Nature Communications, 2018, 9, 4976.	5.8	110
21	Mutant TRP53 exerts a target gene-selective dominant-negative effect to drive tumor development. Genes and Development, 2018, 32, 1420-1429.	2.7	29
22	Humanized Mcl-1 mice enable accurate preclinical evaluation of MCL-1 inhibitors destined for clinical use. Blood, 2018, 132, 1573-1583.	0.6	67
23	The Walrus and the Carpenter: Complex Regulation of Tumor Immunity in Colorectal Cancer. Cell, 2018, 174, 14-16.	13.5	70
24	BCL-2: Long and winding path from discovery to therapeutic target. Biochemical and Biophysical Research Communications, 2017, 482, 459-469.	1.0	55
25	Huntingtin Inclusions Trigger Cellular Quiescence, Deactivate Apoptosis, and Lead to Delayed Necrosis. Cell Reports, 2017, 19, 919-927.	2.9	98
26	A critical epithelial survival axis regulated by MCL-1 maintains thymic function in mice. Blood, 2017, 130, 2504-2515.	0.6	40
27	Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer. Science Translational Medicine, 2017, 9, .	5.8	148
28	BAK α6 permits activation by BH3-only proteins and homooligomerization via the canonical hydrophobic groove. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7629-7634.	3.3	32
29	Conversion of Bim-BH3 from Activator to Inhibitor of Bak through Structure-Based Design. Molecular Cell, 2017, 68, 659-672.e9.	4.5	57
30	Parkin and mitophagy in cancer. Oncogene, 2017, 36, 1315-1327.	2.6	201
31	Disordered clusters of Bak dimers rupture mitochondria during apoptosis. ELife, 2017, 6, .	2.8	60
32	Identification of an activation site in Bak and mitochondrial Bax triggered by antibodies. Nature Communications, 2016, 7, 11734.	5.8	50
33	Doughnuts, daisy chains and crescent moons: the quest for the elusive apoptotic pore. EMBO Journal, 2016, 35, 371-373.	3.5	9
34	Physiological restraint of Bak by Bcl-x _L is essential for cell survival. Genes and Development, 2016, 30, 1240-1250.	2.7	40
35	Characterizing Bcl-2 Family Protein Conformation and Oligomerization Using Cross-Linking and Antibody Gel-Shift in Conjunction with Native PAGE. Methods in Molecular Biology, 2016, 1419, 185-196.	0.4	3
36	Apoptosis regulates endothelial cell number and capillary vessel diameter but not vessel regression during retinal angiogenesis. Development (Cambridge), 2016, 143, 2973-82.	1.2	34

#	Article	IF	CITATIONS
37	Endothelial cell survival during angiogenesis requires the pro-survival protein MCL1. Cell Death and Differentiation, 2016, 23, 1371-1379.	5.0	27
38	Mitochondria and apoptosis: emerging concepts. F1000prime Reports, 2015, 7, 42.	5.9	69
39	Bid chimeras indicate that most BH3-only proteins can directly activate Bak and Bax, and show no preference for Bak versus Bax. Cell Death and Disease, 2015, 6, e1735-e1735.	2.7	76
40	Bak apoptotic pores involve a flexible C-terminal region and juxtaposition of the C-terminal transmembrane domains. Cell Death and Differentiation, 2015, 22, 1665-1675.	5.0	51
41	Two roads to death – Bax targets mitochondria by distinct routes before or during apoptotic cell death. Molecular and Cellular Oncology, 2015, 2, e974460.	0.3	2
42	Dissociation of Bak $\hat{l}\pm 1$ helix from the core and latch domains is required for apoptosis. Nature Communications, 2015, 6, 6841.	5.8	48
43	Investigating Bak/Bax Activating Conformation Change by Immunoprecipitation: Table 1 Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086454.	0.2	3
44	Blue Native PAGE and Antibody Gel Shift to Assess Bak and Bax Conformation Change and Oligomerization. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086488.	0.2	6
45	Detection of Bak/Bax Activating Conformation Change by Intracellular Flow Cytometry: Table 1 Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086462.	0.2	2
46	Investigating the Oligomerization of Bak and Bax during Apoptosis by Cysteine Linkage: Figure 1 Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086470.	0.2	4
47	Investigating Bax Subcellular Localization and Membrane Integration. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086447.	0.2	13
48	Crystal structure of Bax bound to the BH3 peptide of Bim identifies important contacts for interaction. Cell Death and Disease, 2015, 6, e1809-e1809.	2.7	54
49	An aspartyl protease defines a novel pathway for export of Toxoplasma proteins into the host cell. ELife, 2015, 4, .	2.8	99
50	The Functional Differences between Pro-survival and Pro-apoptotic B Cell Lymphoma 2 (Bcl-2) Proteins Depend on Structural Differences in Their Bcl-2 Homology 3 (BH3) Domains. Journal of Biological Chemistry, 2014, 289, 36001-36017.	1.6	33
51	Apoptotic pore formation is associated with in-plane insertion of Bak or Bax central helices into the mitochondrial outer membrane. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4076-85.	3.3	111
52	Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Cell Death and Differentiation, 2014, 21, 196-205.	5.0	330
53	RIPK1 Regulates RIPK3-MLKL-Driven Systemic Inflammation and Emergency Hematopoiesis. Cell, 2014, 157, 1175-1188.	13.5	492
54	Bax targets mitochondria by distinct mechanisms before or during apoptotic cell death: a requirement for VDAC2 or Bak for efficient Bax apoptotic function. Cell Death and Differentiation, 2014, 21, 1925-1935.	5.0	106

#	Article	IF	CITATIONS
55	Bak Core and Latch Domains Separate during Activation, and Freed Core Domains Form Symmetric Homodimers. Molecular Cell, 2014, 55, 938-946.	4.5	140
56	LymphotoxinÂα induces apoptosis, necroptosis and inflammatory signals with the same potency as tumour necrosis factor. FEBS Journal, 2013, 280, 5283-5297.	2.2	57
57	Bax Crystal Structures Reveal How BH3 Domains Activate Bax and Nucleate Its Oligomerization to Induce Apoptosis. Cell, 2013, 152, 519-531.	13.5	491
58	Bak apoptotic function is not directly regulated by phosphorylation. Cell Death and Disease, 2013, 4, e452-e452.	2.7	12
59	Assembly of the Bak Apoptotic Pore. Journal of Biological Chemistry, 2013, 288, 26027-26038.	1.6	67
60	Bax dimerizes via a symmetric BH3:groove interface during apoptosis. Cell Death and Differentiation, 2012, 19, 661-670.	5.0	161
61	Granzyme B triggers a prolonged pressure to die in Bcl-2 overexpressing cells, defining a window of opportunity for effective treatment with ABT-737. Cell Death and Disease, 2012, 3, e344-e344.	2.7	18
62	Translocation of a Bak C-Terminus Mutant from Cytosol to Mitochondria to Mediate Cytochrome c Release: Implications for Bak and Bax Apoptotic Function. PLoS ONE, 2012, 7, e31510.	1.1	46
63	Crystal Structure of a BCL-W Domain-Swapped Dimer: Implications for the Function of BCL-2 Family Proteins. Structure, 2011, 19, 1467-1476.	1.6	25
64	Molecular biology of Bax and Bak activation and action. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 521-531.	1.9	415
65	Fas-mediated neutrophil apoptosis is accelerated by Bid, Bak, and Bax and inhibited by Bcl-2 and Mcl-1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13135-13140.	3.3	98
66	Maximal killing of lymphoma cells by DNA damage–inducing therapy requires not only the p53 targets Puma and Noxa, but also Bim. Blood, 2010, 116, 5256-5267.	0.6	87
67	Inhibition of Bak Activation by VDAC2 Is Dependent on the Bak Transmembrane Anchor. Journal of Biological Chemistry, 2010, 285, 36876-36883.	1.6	83
68	Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. Journal of Cell Science, 2009, 122, 2801-2808.	1.2	283
69	Bak Activation for Apoptosis Involves Oligomerization of Dimers via Their α6 Helices. Molecular Cell, 2009, 36, 696-703.	4.5	200
70	To Trigger Apoptosis, Bak Exposes Its BH3 Domain and Homodimerizes via BH3:Groove Interactions. Molecular Cell, 2008, 30, 369-380.	4.5	296
71	Mitochondrial permeabilization relies on BH3 ligands engaging multiple prosurvival Bcl-2 relatives, not Bak. Journal of Cell Biology, 2007, 177, 277-287.	2.3	109
72	Interleukin 15–mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nature Immunology, 2007, 8, 856-863.	7.0	231

#	Article	IF	CITATIONS
73	Mitochondrial Release of Pro-apoptotic Proteins. Journal of Biological Chemistry, 2005, 280, 2266-2274.	1.6	154
74	Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes and Development, 2005, 19, 1294-1305.	2.7	1,071
75	Intermediate Filaments Control the Intracellular Distribution of Caspases During Apoptosis. American Journal of Pathology, 2004, 164, 395-407.	1.9	60
76	Conformational change and mitochondrial translocation of Bax accompany proteasome inhibitor-induced apoptosis of chronic lymphocytic leukemic cells. Oncogene, 2003, 22, 2643-2654.	2.6	102
77	Multigene family isoform profiling from blood cell lineages. BMC Genomics, 2002, 3, 22.	1.2	6
78	Death and survival signalling in neutrophils. Trends in Biochemical Sciences, 2002, 27, 118-119.	3.7	0
79	Controlling phagocytosis: brief encounter or death embrace?. Trends in Biochemical Sciences, 2002, 27, 502.	3.7	0
80	Interleukin-5 inhibits translocation of Bax to the mitochondria, cytochrome c release, and activation of caspases in human eosinophils. Blood, 2001, 98, 2239-2247.	0.6	88
81	Small, but deadly: small-molecule inhibition of Bcl-2 homologue heterodimerization. Trends in Biochemical Sciences, 2001, 26, 218-219.	3.7	2
82	Bax to the wall: Bax- and Bak-induced mitochondrial dysfunction in apoptosis. Trends in Biochemical Sciences, 2001, 26, 353.	3.7	3
83	Return of the living dead. Trends in Biochemical Sciences, 2001, 26, 529-530.	3.7	0
84	Interleukin-13 induces PSGL-1/P–selectin–dependent adhesion of eosinophils, but not neutrophils, to human umbilical vein endothelial cells under flow. Blood, 2000, 95, 3146-3152.	0.6	5
85	Expression of Bcl-2 and Its Homologues in Human Eosinophils. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 720-728.	1.4	54
86	A comparative study of different methods for the assessment of apoptosis and necrosis in human eosinophils. Journal of Immunological Methods, 1998, 217, 153-163.	0.6	100
87	Human eosinophils: Apoptosis versus survival in the mediation of inflammation. Apoptosis: an International Journal on Programmed Cell Death, 1996, 1, 111-118.	2.2	6