Robert C Brooks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/921674/publications.pdf

Version: 2024-02-01

196 papers 12,321 citations

54 h-index 30087 103 g-index

199 all docs

199 docs citations

times ranked

199

7336 citing authors

#	Article	IF	CITATIONS
1	Lifespan and reproduction in <i>Drosophila</i> : New insights from nutritional geometry. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2498-2503.	7.1	887
2	The evolution of mate choice and mating biases. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 653-664.	2.6	733
3	Unifying and Testing Models of Sexual Selection. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 43-66.	8.3	454
4	Sexual selection, sexual conflict and the evolution of ageing and life span. Functional Ecology, 2008, 22, 443-453.	3.6	440
5	High-quality male field crickets invest heavily in sexual display but die young. Nature, 2004, 432, 1024-1027.	27.8	426
6	Sex-Specific Fitness Effects of Nutrient Intake on Reproduction and Lifespan. Current Biology, 2008, 18, 1062-1066.	3.9	408
7	The sexual selection continuum. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1331-1340.	2.6	396
8	What is genetic quality?. Trends in Ecology and Evolution, 2004, 19, 329-333.	8.7	388
9	Can older males deliver the good genes?. Trends in Ecology and Evolution, 2001, 16, 308-313.	8.7	287
10	Measuring Nonlinear Selection. American Naturalist, 2003, 162, 815-820.	2.1	268
10	Measuring Nonlinear Selection. American Naturalist, 2003, 162, 815-820. Negative genetic correlation between male sexual attractiveness and survival. Nature, 2000, 406, 67-70.	2.1	268 257
11	Negative genetic correlation between male sexual attractiveness and survival. Nature, 2000, 406, 67-70. FEMALE GUPPIES AGREE TO DIFFER: PHENOTYPIC AND GENETIC VARIATION IN MATE-CHOICE BEHAVIOR AND THE CONSEQUENCES FOR SEXUAL SELECTION. Evolution; International Journal of Organic Evolution,	27.8	257
11 12	Negative genetic correlation between male sexual attractiveness and survival. Nature, 2000, 406, 67-70. FEMALE GUPPIES AGREE TO DIFFER: PHENOTYPIC AND GENETIC VARIATION IN MATE-CHOICE BEHAVIOR AND THE CONSEQUENCES FOR SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2001, 55, 1644-1655. DIRECT AND INDIRECT SEXUAL SELECTION AND QUANTITATIVE GENETICS OF MALE TRAITS IN GUPPIES	27.8	257 254
11 12 13	Negative genetic correlation between male sexual attractiveness and survival. Nature, 2000, 406, 67-70. FEMALE GUPPIES AGREE TO DIFFER: PHENOTYPIC AND GENETIC VARIATION IN MATE-CHOICE BEHAVIOR AND THE CONSEQUENCES FOR SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2001, 55, 1644-1655. DIRECT AND INDIRECT SEXUAL SELECTION AND QUANTITATIVE GENETICS OF MALE TRAITS IN GUPPIES (POECILIA RETICULATA). Evolution; International Journal of Organic Evolution, 2001, 55, 1002.	27.8 2.3 2.3	257 254 246
11 12 13	Negative genetic correlation between male sexual attractiveness and survival. Nature, 2000, 406, 67-70. FEMALE GUPPIES AGREE TO DIFFER: PHENOTYPIC AND GENETIC VARIATION IN MATE-CHOICE BEHAVIOR AND THE CONSEQUENCES FOR SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2001, 55, 1644-1655. DIRECT AND INDIRECT SEXUAL SELECTION AND QUANTITATIVE GENETICS OF MALE TRAITS IN GUPPIES (POECILIA RETICULATA). Evolution; International Journal of Organic Evolution, 2001, 55, 1002. Female Mate Choice as a Conditionâ€Dependent Lifeâ€History Trait. American Naturalist, 2005, 166, 79-92. EXPERIMENTAL EVIDENCE FOR MULTIVARIATE STABILIZING SEXUAL SELECTION. Evolution; International	27.8 2.3 2.3	257 254 246 225
11 12 13 14	Negative genetic correlation between male sexual attractiveness and survival. Nature, 2000, 406, 67-70. FEMALE GUPPIES AGREE TO DIFFER: PHENOTYPIC AND GENETIC VARIATION IN MATE-CHOICE BEHAVIOR AND THE CONSEQUENCES FOR SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2001, 55, 1644-1655. DIRECT AND INDIRECT SEXUAL SELECTION AND QUANTITATIVE GENETICS OF MALE TRAITS IN GUPPIES (POECILIA RETICULATA). Evolution; International Journal of Organic Evolution, 2001, 55, 1002. Female Mate Choice as a Conditionâ€Dependent Lifeâ€History Trait. American Naturalist, 2005, 166, 79-92. EXPERIMENTAL EVIDENCE FOR MULTIVARIATE STABILIZING SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2005, 59, 871-880. The Indirect Benefits of Mating with Attractive Males Outweigh the Direct Costs. PLoS Biology, 2005,	27.8 2.3 2.1 2.3	257 254 246 225

#	Article	IF	Citations
19	EXPLORING COMPLEX FITNESS SURFACES: MULTIPLE ORNAMENTATION AND POLYMORPHISM IN MALE GUPPIES. Evolution; International Journal of Organic Evolution, 2003, 57, 1622-1630.	2.3	146
20	Invasion success and genetic diversity of introduced populations of guppies Poecilia reticulata in Australia. Molecular Ecology, 2005, 14, 3671-3682.	3.9	141
21	It's All Who You Know: The Evolution Of Socially Cued Anticipatory Plasticity As A Mating Strategy. Quarterly Review of Biology, 2011, 86, 181-197.	0.1	118
22	Contrasting relatedness patterns in bottlenose dolphins (Tursiopssp.) with different alliance strategies. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 497-502.	2.6	116
23	Environmental variation and the maintenance of polymorphism: the effect of ambient light spectrum on mating behaviour and sexual selection in guppies. Ecology Letters, 2003, 6, 463-472.	6.4	109
24	Female choice in a feral guppy population: are there multiple cues?. Animal Behaviour, 1995, 50, 301-307.	1.9	105
25	Title is missing!. Genetica, 2002, 116, 343-358.	1.1	102
26	National income inequality predicts women's preferences for masculinized faces better than health does. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 810-812.	2.6	97
27	The role of facial hair in women's perceptions of men's attractiveness, health, masculinity and parenting abilities. Evolution and Human Behavior, 2013, 34, 236-241.	2.2	97
28	Multiple Sexual Ornaments Coevolve with Multiple Mating Preferences. American Naturalist, 1999, 154, 37-45.	2.1	95
29	Where do all the maternal effects go? Variation in offspring body size through ontogeny in the live-bearing fish Poecilia parae. Biology Letters, 2006, 2, 586-589.	2.3	88
30	Environmental Effects on the Expression of Life Span and Aging: An Extreme Contrast between Wild and Captive Cohorts of Telostylinus angusticollis (Diptera: Neriidae). American Naturalist, 2008, 172, 346-357.	2.1	82
31	Oxidative stress and condition-dependent sexual signals: more than just seeing red. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3121-3130.	2.6	82
32	Copying and the repeatability of mate choice. Behavioral Ecology and Sociobiology, 1996, 39, 323-329.	1.4	80
33	Mate choice for genetic quality when environments vary: suggestions for empirical progress. Genetica, 2008, 134, 69-78.	1.1	79
34	EVOLUTION OF MALE AND FEMALE GENITALIA FOLLOWING RELEASE FROM SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2011, 65, 2171-2183.	2.3	79
35	SEXUAL CONFLICT AND CRYPTIC FEMALE CHOICE IN THE BLACK FIELD CRICKET, TELEOGRYLLUS COMMODUS. Evolution; International Journal of Organic Evolution, 2006, 60, 792.	2.3	76
36	Life history evolution, reproduction, and the origins of sexâ€dependent aging and longevity. Annals of the New York Academy of Sciences, 2017, 1389, 92-107.	3.8	76

3

#	Article	IF	CITATIONS
37	THE EFFECTS OF GENOTYPE, AGE, AND SOCIAL ENVIRONMENT ON MALE ORNAMENTATION, MATING BEHAVIOR, AND ATTRACTIVENESS. Evolution; International Journal of Organic Evolution, 2005, 59, 2414-2425.	2.3	73
38	The multivariate evolution of female body shape in an artificial digital ecosystem. Evolution and Human Behavior, 2015, 36, 351-358.	2.2	72
39	Sex differences in nutrientâ€dependent reproductive ageing. Aging Cell, 2009, 8, 324-330.	6.7	71
40	The Effects of Inbreeding on Male Courtship Behaviour and Coloration in Guppies. Ethology, 2006, 112, 807-814.	1.1	69
41	Reconciling Strong Stabilizing Selection with the Maintenance of Genetic Variation in a Natural Population of Black Field Crickets (Teleogryllus commodus). Genetics, 2007, 177, 875-880.	2.9	68
42	EXPERIMENTAL EVIDENCE THAT SEXUAL CONFLICT INFLUENCES THE OPPORTUNITY, FORM AND INTENSITY OF SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2008, 62, 2305-2315.	2.3	68
43	EXPERIMENTAL ANALYSIS OF MULTIVARIATE FEMALE CHOICE IN GRAY TREEFROGS (<i>HYLA VERSICOLOR</i>): EVIDENCE FOR DIRECTIONAL AND STABILIZING SELECTION. Evolution; International Journal of Organic Evolution, 2009, 63, 2504-2512.	2.3	68
44	The masculinity paradox: facial masculinity and beardedness interact to determine women's ratings of men's facial attractiveness. Journal of Evolutionary Biology, 2016, 29, 2311-2320.	1.7	67
45	Sinister strategies succeed at the cricket World Cup. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S64-6.	2.6	66
46	Sexual dimorphism in trait variability and its eco-evolutionary and statistical implications. ELife, 2020, 9, .	6.0	64
47	Effects of juvenile and adult diet on ageing and reproductive effort of male and female black field crickets, <i>Teleogryllus commodus</i> . Functional Ecology, 2009, 23, 602-611.	3.6	63
48	Negative frequency-dependent preferences and variation in male facial hair. Biology Letters, 2014, 10, 20130958.	2.3	62
49	The importance of mate copying and cultural inheritance of mating preferences. Trends in Ecology and Evolution, 1998, 13, 45-46.	8.7	61
50	Sexual coercion and the opportunity for sexual selection in guppies. Animal Behaviour, 2006, 71, 515-522.	1.9	61
51	Experimental evidence that high levels of inbreeding depress sperm competitiveness. Journal of Evolutionary Biology, 2009, 22, 1338-1345.	1.7	60
52	Income inequality not gender inequality positively covaries with female sexualization on social media. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8722-8727.	7.1	59
53	Experimental evidence for multivariate stabilizing sexual selection. Evolution; International Journal of Organic Evolution, 2005, 59, 871-80.	2.3	59
54	Extreme polymorphism in a Y-linked sexually selected trait. Heredity, 2004, 92, 156-162.	2.6	58

#	Article	IF	CITATIONS
55	Artificial Selection on Male Longevity Influences Ageâ€Dependent Reproductive Effort in the Black Field Cricket Teleogryllus commodus. American Naturalist, 2006, 168, E72-E86.	2.1	56
56	OPERATIONAL SEX RATIO AND DENSITY DO NOT AFFECT DIRECTIONAL SELECTION ON MALE SEXUAL ORNAMENTS AND BEHAVIOR. Evolution; International Journal of Organic Evolution, 2008, 62, 135-144.	2.3	56
57	The juvenile social environment introduces variation in the choice and expression of sexually selected traits. Ecology and Evolution, 2012, 2, 1036-1047.	1.9	56
58	The importance of listening: juvenile allocation shifts in response to acoustic cues of the social environment. Journal of Evolutionary Biology, 2011, 24, 1325-1334.	1.7	55
59	Distinguishing the Effects of Familiarity, Relatedness, and Color Pattern Rarity on Attractiveness and Measuring Their Effects on Sexual Selection in Guppies (<i>Poecilia reticulata</i>). American Naturalist, 2008, 172, 843-854.	2.1	54
60	The price of protein: combining evolutionary and economic analysis to understand excessive energy consumption. Obesity Reviews, 2010, 11, 887-894.	6.5	54
61	Inbreeding depression in male traits and preference for outbred males in Poecilia reticulata. Behavioral Ecology, 2010, 21, 884-891.	2.2	54
62	Beards and the big city: displays of masculinity may be amplified under crowded conditions. Evolution and Human Behavior, 2017, 38, 259-264.	2,2	54
63	Male attractiveness covaries with fighting ability but not with prior fight outcome in house crickets. Behavioral Ecology, 2005, 16, 196-200.	2.2	51
64	Independent effects of familiarity and mating preferences for ornamental traits on mating decisions in guppies. Behavioral Ecology, 2006, 17, 911-916.	2.2	48
65	Heritable pollution tolerance in a marine invader. Environmental Research, 2011, 111, 926-932.	7.5	48
66	NO EVIDENCE FOR INBREEDING AVOIDANCE THROUGH POSTCOPULATORY MECHANISMS IN THE BLACK FIELD CRICKET, TELEOGRYLLUS COMMODUS. Evolution; International Journal of Organic Evolution, 2004, 58, 2472-2477.	2.3	47
67	SEX DIFFERENCES, SEXUAL SELECTION, AND AGEING: AN EXPERIMENTAL EVOLUTION APPROACH. Evolution; International Journal of Organic Evolution, 2009, 63, 2491-2503.	2.3	47
68	SEX-DEPENDENT SELECTION DIFFERENTIALLY SHAPES GENETIC VARIATION ON AND OFF THE GUPPY Y CHROMOSOME. Evolution; International Journal of Organic Evolution, 2011, 65, 2145-2156.	2.3	47
69	Physiological adaptations to reproduction I. Experimentally increasing litter size enhances aspects of antioxidant defence but does not cause oxidative damage in mice. Journal of Experimental Biology, 2013, 216, 2879-88.	1.7	47
70	Melanin as a visual signal amplifier in male guppies. Die Naturwissenschaften, 1996, 83, 39-41.	1.6	46
71	High Juvenile Mortality Is Associated with Sex-Specific Adult Survival and Lifespan in Wild Roe Deer. Current Biology, 2015, 25, 759-763.	3.9	46
72	The role of mating context and fecundability in women's preferences for men's facial masculinity and beardedness. Psychoneuroendocrinology, 2018, 93, 90-102.	2.7	46

#	Article	IF	CITATIONS
73	Sex effects on life span and senescence in the wild when dates of birth and death are unknown. Ecology, 2009, 90, 1698-1707.	3.2	45
74	RECENT SOCIAL HISTORY ALTERS MALE COURTSHIP PREFERENCES. Evolution; International Journal of Organic Evolution, 2012, 66, 280-287.	2.3	45
75	Sexual Dimorphism in Life History: Age, Survival, and Reproduction in Male and Female Field Crickets <i>Teleogryllus commodus</i> under Seminatural Conditions. American Naturalist, 2009, 173, 792-802.	2.1	43
76	The lifetime costs of increased male reproductive effort: courtship, copulation and the Coolidge effect. Journal of Evolutionary Biology, 2010, 23, 2403-2409.	1.7	43
77	Diversification of the eutherian placenta is associated with changes in the pace of life. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7760-7765.	7.1	41
78	Interactions among performance capacities predict male combat outcomes in the field cricket. Functional Ecology, 2010, 24, 159-164.	3.6	40
79	Performance is no proxy for genetic quality: tradeâ€offs between locomotion, attractiveness, and life history in crickets. Ecology, 2010, 91, 1530-1537.	3.2	40
80	Contrasting sexual selection on males and females in a roleâ€reversed swarming dance fly, <i>Rhamphomyia longicauda</i> Loew (Diptera: Empididae). Journal of Evolutionary Biology, 2008, 21, 1683-1691.	1.7	38
81	Do prevailing environmental factors influence human preferences for facial morphology?. Behavioral Ecology, 2017, 28, 1217-1227.	2.2	38
82	Sounds different: inbreeding depression in sexually selected traits in the cricket Teleogryllus commodus. Journal of Evolutionary Biology, 2007, 20, 1138-1147.	1.7	37
83	Long-Term Effect of Social Interactions on Behavioral Plasticity and Lifetime Mating Success. American Naturalist, 2014, 183, 431-444.	2.1	37
84	Mate Choice Copying in Humans: a Systematic Review and Meta-Analysis. Adaptive Human Behavior and Physiology, 2018, 4, 364-386.	1.1	36
85	MATE CHOICE COPYING IN GUPPIES: FEMALES AVOID THE PLACE WHERE THEY SAW COURTSHIP. Behaviour, 1999, 136, 411-421.	0.8	35
86	Competitive PCR reveals the complexity of postcopulatory sexual selection in <i>Teleogryllus commodus</i> . Molecular Ecology, 2010, 19, 610-619.	3.9	35
87	A widespread contaminant enhances invasion success of a marine invader. Journal of Applied Ecology, 2012, 49, 767-773.	4.0	35
88	Copper-zinc superoxide dismutase deficiency impairs sperm motility and in vivo fertility. Reproduction, 2013, 146, 297-304.	2.6	34
89	The effects of familiarity and group size on mating preferences in the guppy, <i>Poecilia reticulata</i> Journal of Evolutionary Biology, 2010, 23, 1772-1782.	1.7	33
90	No Intra-Locus Sexual Conflict over Reproductive Fitness or Ageing in Field Crickets. PLoS ONE, 2007, 2, e155.	2.5	33

#	Article	IF	Citations
91	Variation in female mate choice within guppy populations: population divergence, multiple ornaments and the maintenance of polymorphism. Genetica, 2002, 116, 343-58.	1.1	33
92	Do female black field crickets Teleogryllus commodus benefit from polyandry?. Journal of Evolutionary Biology, 2007, 20, 1469-1477.	1.7	32
93	Sexual conflict in mammals: consequences for mating systems and life history. Mammal Review, 2013, 43, 47-58.	4.8	32
94	SEXUAL CONFLICT AND THE MAINTENANCE OF MULTIVARIATE GENETIC VARIATION. Evolution; International Journal of Organic Evolution, 2010, 64, 1697-1703.	2.3	31
95	Selective Enrichment and Sequencing of Whole Mitochondrial Genomes in the Presence of Nuclear Encoded Mitochondrial Pseudogenes (Numts). PLoS ONE, 2012, 7, e37142.	2.5	31
96	Status anxiety mediates the positive relationship between income inequality and sexualization. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25029-25033.	7.1	31
97	Sexual responsiveness is condition-dependent in female guppies, but preference functions are not., 2004, 4, 5.		30
98	Body condition but not dietary restriction prolongs lifespan in a semelparous capital breeder. Biology Letters, 2009, 5, 636-638.	2.3	30
99	Human facial attributes, but not perceived intelligence, are used as cues of health and resource provision potential. Behavioral Ecology, 2013, 24, 779-787.	2.2	30
100	A multivariate approach to human mate preferences. Evolution and Human Behavior, 2014, 35, 193-203.	2.2	30
101	Man, Woman, "Other― Factors Associated with Nonbinary Gender Identification. Archives of Sexual Behavior, 2018, 47, 2397-2406.	1.9	30
102	Intimidating courtship and sex differences in predation risk lead to sex-specific behavioural syndromes. Animal Behaviour, 2015, 109, 177-185.	1.9	29
103	The effects of genotype, age, and social environment on male ornamentation, mating behavior, and attractiveness. Evolution; International Journal of Organic Evolution, 2005, 59, 2414-25.	2.3	26
104	Evolution of individual variation in behaviour and behavioural plasticity under scramble competition. Animal Behaviour, 2013, 86, 435-442.	1.9	25
105	Cross-Cultural Variation in women's Preferences for men's Body Hair. Adaptive Human Behavior and Physiology, 2019, 5, 131-147.	1.1	25
106	Plant defences against mammalian herbivores: are juvenile <i>Acacia</i> more heavily defended than mature trees?. Bothalia, 1994, 24, 211-215.	0.3	25
107	Diet, sex, and death in field crickets. Ecology and Evolution, 2012, 2, 1627-1636.	1.9	24
108	Correlational selection does not explain the evolution of a behavioural syndrome. Journal of Evolutionary Biology, 2013, 26, 2260-2270.	1.7	24

#	Article	IF	CITATIONS
109	Limited plasticity in the phenotypic varianceâ€covariance matrix for male advertisement calls in the black field cricket, <i>Teleogryllus commodus</i> . Journal of Evolutionary Biology, 2013, 26, 1060-1078.	1.7	24
110	The complexity of male reproductive success: effects of nutrition, morphology, and experience. Behavioral Ecology, 2015, 26, 617-624.	2.2	24
111	Who suppresses female sexuality? An examination of support for Islamic veiling in a secular Muslim democracy as a function of sex and offspring sex. Evolution and Human Behavior, 2018, 39, 632-638.	2.2	24
112	Pathogen disgust sensitivity and resource scarcity are associated with mate preference for different waist-to-hip ratios, shoulder-to-hip ratios, and body mass index. Evolution and Human Behavior, 2015, 36, 480-488.	2.2	23
113	EXPERIMENTAL EVIDENCE FOR MULTIVARIATE STABILIZING SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2005, 59, 871.	2.3	22
114	DIRECT AND INDIRECT SEXUAL SELECTION AND QUANTITATIVE GENETICS OF MALE TRAITS IN GUPPIES (POECILIA RETICULATA). Evolution; International Journal of Organic Evolution, 2001, 55, 1002-1015.	2.3	22
115	Beyond waist–hip ratio: experimental multivariate evidence that average women's torsos are most attractive. Behavioral Ecology, 2009, 20, 716-721.	2.2	22
116	Socially cued developmental plasticity affects condition-dependent trait expression. Behavioral Ecology, 2013, 24, 429-434.	2.2	22
117	Sexual Display and Mate Choice in an Energetically Costly Environment. PLoS ONE, 2010, 5, e15279.	2.5	22
118	SEXUAL CONFLICT AND CRYPTIC FEMALE CHOICE IN THE BLACK FIELD CRICKET, TELEOGRYLLUS COMMODUS. Evolution; International Journal of Organic Evolution, 2006, 60, 792-800.	2.3	21
119	DIFFERENTIAL AGING OF BITE AND JUMP PERFORMANCE IN VIRGIN AND MATED TELEOGRYLLUS COMMODUS CRICKETS. Evolution; International Journal of Organic Evolution, 2011, 65, 3138-3147.	2.3	21
120	Manipulating reproductive effort leads to changes in female reproductive scheduling but not oxidative stress. Ecology and Evolution, 2013, 3, 4161-4171.	1.9	21
121	The interaction between genotype and juvenile and adult density environment in shaping multidimensional reaction norms of behaviour. Functional Ecology, 2015, 29, 78-87.	3.6	21
122	Incel Activity on Social Media Linked to Local Mating Ecology. Psychological Science, 2022, 33, 249-258.	3.3	21
123	FEMALE GUPPIES AGREE TO DIFFER: PHENOTYPIC AND GENETIC VARIATION IN MATE-CHOICE BEHAVIOR AND THE CONSEQUENCES FOR SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2001, 55, 1644.	2.3	19
124	Using clones and copper to resolve the genetic architecture of metal tolerance in a marine invader. Ecology and Evolution, 2012, 2, 1319-1329.	1.9	19
125	Are Preferences for Women's Hair Color Frequency-Dependent?. Adaptive Human Behavior and Physiology, 2015, 1, 54-71.	1.1	19
126	Same-sex sexual behaviour as a by-product of reproductive strategy under male–male scramble competition. Animal Behaviour, 2015, 108, 193-197.	1.9	19

#	Article	IF	CITATIONS
127	The dark side of sexual selection. Trends in Ecology and Evolution, 1999, 14, 336-337.	8.7	18
128	Multivariate selection shapes environment-dependent variation in the clonal morphology of a red seaweed. Evolutionary Ecology, 2007, 21, 765-782.	1.2	18
129	Much more than a ratio: multivariate selection on female bodies. Journal of Evolutionary Biology, 2010, 23, 2238-2248.	1.7	18
130	Sex Differences in Obesity Associated with Total Fertility Rate. PLoS ONE, 2010, 5, e10587.	2.5	18
131	Sexual conflict and cryptic female choice in the black field cricket, Teleogryllus commodus. Evolution; International Journal of Organic Evolution, 2006, 60, 792-800.	2.3	18
132	EXPLORING COMPLEX FITNESS SURFACES: MULTIPLE ORNAMENTATION AND POLYMORPHISM IN MALE GUPPIES. Evolution; International Journal of Organic Evolution, 2003, 57, 1622.	2.3	17
133	Genetic association between male attractiveness and female differential allocation. Biology Letters, 2006, 2, 341-344.	2.3	17
134	DOES GENETIC RELATEDNESS OF MATES INFLUENCE COMPETITIVE FERTILIZATION SUCCESS IN GUPPIES?. Evolution; International Journal of Organic Evolution, 2008, 62, 2929-2935.	2.3	17
135	THE ROLES OF LIFE-HISTORY SELECTION AND SEXUAL SELECTION IN THE ADAPTIVE EVOLUTION OF MATING BEHAVIOR IN A BEETLE. Evolution; International Journal of Organic Evolution, 2009, 64, 1273-82.	2.3	17
136	A genetic reduction in antioxidant function causes elevated aggression in mice. Journal of Experimental Biology, 2014, 218, 223-7.	1.7	17
137	Superoxide dismutase deficiency impairs olfactory sexual signaling and alters bioenergetic function in mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8119-8124.	7.1	17
138	Causes of male sexual trait divergence in introduced populations of guppies. Journal of Evolutionary Biology, 2014, 27, 437-448.	1.7	17
139	Mating in the absence of fertilization promotes a growth-reproduction versus lifespan trade-off in female mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15748-15754.	7.1	17
140	Physiological adaptations to reproduction II. Mitochondrial adjustments in livers of lactating mice. Journal of Experimental Biology, 2013, 216, 2889-95.	1.7	16
141	SEX-SPECIFIC EVOLUTIONARY POTENTIAL OF PRE- AND POSTCOPULATORY REPRODUCTIVE INTERACTIONS IN THE FIELD CRICKET, <i>TELEOGRYLLUS COMMODUS </i> Evolution; International Journal of Organic Evolution, 2013, 67, 1831-1837.	2.3	16
142	"Asia's Missing Women―as a Problem in Applied Evolutionary Psychology?. Evolutionary Psychology, 2012, 10, 910-925.	0.9	15
143	Evolution of mate choice in the wild. Nature, 2006, 444, E16-E16.	27.8	14
144	Male Presence can Increase Body Mass and Induce a Stress-Response in Female Mice Independent of Costs of Offspring Production. Scientific Reports, 2016, 6, 23538.	3.3	14

#	Article	IF	CITATIONS
145	The Effects of the Mating Market, Sex, Age, and Income on Sociopolitical Orientation. Human Nature, 2020, 31, 88-111.	1.6	14
146	Polymorphism, mate choice and sexual selection in the Gouldian finch (Erythrura gouldiae). Australian Journal of Zoology, 2002, 50, 125.	1.0	12
147	Quantifying male attractiveness. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1925-1932.	2.6	12
148	The Effect of Diet Quality and Wing Morph on Male and Female Reproductive Investment in a Nuptial Feeding Ground Cricket. PLoS ONE, 2008, 3, e3437.	2.5	12
149	Persistent effect of sex ratios on relationship quality and life satisfaction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160315.	4.0	12
150	Demographic costs of inbreeding revealed by sex-specific genetic rescue effects. BMC Evolutionary Biology, 2009, 9, 289.	3.2	11
151	Dietâ€dependent female evolution influences male lifespan in a nuptial feeding insect. Journal of Evolutionary Biology, 2009, 22, 873-881.	1.7	11
152	Circannual Rhythms of Appetite and Ecdysis in the Elapid Snake, Hemachatus haemachatus, Appear to Be Endogenous. Copeia, 1999, 1999, 146.	1.3	10
153	A sense of history. Trends in Ecology and Evolution, 2001, 16, 113-115.	8.7	10
154	Sexual economic theory & Sexual economics, 2019, 51, 6100-6112.	2.2	10
155	Do certain personality traits provide a mating market competitive advantage? Sex, offspring & mathematically amp; the big 5. Personality and Individual Differences, 2019, 139, 158-169.	2.9	10
156	Behind the makeup: The effects of cosmetics on women's selfâ€objectification, and their objectification by others. European Journal of Social Psychology, 2021, 51, 703-721.	2.4	10
157	Experimental evidence that litter size imposes an oxidative challenge to offspring. Journal of Experimental Biology, 2015, 218, 3911-8.	1.7	9
158	Sex differences in sexual attraction for aesthetics, resources and personality across age. PLoS ONE, 2021, 16, e0250151.	2.5	9
159	Intersexual and intrasexual selection, sneak copulation and male ornamentation in guppies (Poecilia) Tj ETQq1	l 0.784314	rgBT /Overlo
160	In the context of romantic attraction, beautification can increase assertiveness in women. PLoS ONE, 2020, 15, e0229162.	2.5	8
161	Sexual Conflict and Gender Gap Effects: Associations between Social Context and Sex on Rated Attractiveness and Economic Status. PLoS ONE, 2016, 11, e0146269.	2.5	8
162	Exposure to a novel male during late pregnancy influences subsequent growth of offspring during lactation. Journal of Evolutionary Biology, 2013, 26, 2057-2062.	1.7	6

#	Article	IF	CITATIONS
163	What drives female objectification? An investigation of appearance-based interpersonal perceptions and the objectification of women. PLoS ONE, 2019, 14, e0221388.	2.5	6
164	Female Self-Sexualization Covaries with Mate Value but Not Mate Availability. Adaptive Human Behavior and Physiology, 2020, 6, 277-291.	1.1	6
165	Male descendant kin promote conservative views on gender issues and conformity to traditional norms. Evolutionary Human Sciences, 2021, 3, .	1.7	6
166	Income Inequality and Reproductive Competition: Implications for Consumption, Status-Seeking, and Women's Self-Sexualization. , 2019, , 173-185.		6
167	"Asia's missing women" as a problem in applied evolutionary psychology?. Evolutionary Psychology, 2012, 10, 910-25.	0.9	6
168	The Interplay Between Economic Status and Attractiveness, and the Importance of Attire in Mate Choice Judgments. Frontiers in Psychology, 2019, 10, 462.	2.1	5
169	Access to females and early life castration individually extend maximal but not median lifespan in male mice. GeroScience, 2021, 43, 1437-1446.	4.6	5
170	NO EVIDENCE FOR INBREEDING AVOIDANCE THROUGH POSTCOPULATORY MECHANISMS IN THE BLACK FIELD CRICKET, TELEOGRYLLUS COMMODUS. Evolution; International Journal of Organic Evolution, 2004, 58, 2472.	2.3	4
171	FEMALE PROMISCUITY AND MATERNALLY DEPENDENT OFFSPRING GROWTH RATES IN MAMMALS. Evolution; International Journal of Organic Evolution, 2014, 68, 1207-1215.	2.3	4
172	Fluctuating sexual selection and the evolution of a courtship strategy. Behavioral Ecology, 2016, 27, 886-894.	2.2	4
173	Gendered fitness interests: A method partitioning the effects of family composition on socio-political attitudes and behaviors. Evolution and Human Behavior, 2021, 42, 295-303.	2.2	4
174	Variation in female mate choice within guppy populations: Population divergence, multiple ornaments and the maintenance of polymorphism. Contemporary Issues in Genetics and Evolution, 2002, , 343-358.	0.9	4
175	Evidence of recent population expansion in the field cricket Teleogryllus commodus. Australian Journal of Zoology, 2010, 58, 33.	1.0	3
176	High Mate Value Men Become More Accepting of Intimate Partner Abuse When Primed With Gender Equality. Frontiers in Sociology, 2018, 3, .	2.0	3
177	Perceived threats of infanticide reduce maternal allocation during lactation and lead to elevated oxidative damage in offspring. Functional Ecology, 2018, 32, 2158-2169.	3.6	3
178	Does the Quality of Mating Competitors Affect Socio-Political Attitudes? An Experimental Test. Adaptive Human Behavior and Physiology, 2020, 6, 501-531.	1.1	3
179	Condition-Dependent Mutual Mate Preference and Intersexual Genetic Correlations for Mating Activity. American Naturalist, 2020, 195, 997-1008.	2.1	3
180	Family and Gendered Fitness Interests Effects on Attitudes Toward Women's Veiling, Status-Seeking and Stereotyping of Women in Pakistan. Adaptive Human Behavior and Physiology, 2021, 7, 382-402.	1.1	3

#	Article	IF	CITATIONS
181	The mother–in–law effect. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S61-3.	2.6	2
182	Inconsistent with the data: Support for the CLASH model depends on the wrong kind of latitude. Behavioral and Brain Sciences, 2017, 40, e80.	0.7	2
183	Female mice seek refuge from castrated males, but not intact or vasectomized males, mitigating a socially-induced glucocorticoid response. Physiology and Behavior, 2019, 211, 112678.	2.1	2
184	Papa Don't Preach?. Human Nature, 2020, 31, 222-248.	1.6	2
185	The imitation game: a comment on Davies et al Behavioral Ecology, 2020, 31, 1294-1294.	2.2	1
186	Changes in Positive Affect Due to Popularity in an Experimental Dating Context Influence Some of Menâ∈™s, but Not Women's, Socio-Political Attitudes. Adaptive Human Behavior and Physiology, 2022, 8, 202-237.	1.1	1
187	Widespread Promiscuity and Cheap Weddings: Can "Low-Value―Sexual Relationships Make Certain Individuals More Sexually Conservative?. Archives of Sexual Behavior, 2022, 51, 2791-2811.	1.9	1
188	Reply from R. Brooks. Trends in Ecology and Evolution, 1998, 13, 240-241.	8.7	0
189	THE EFFECTS OF GENOTYPE, AGE, AND SOCIAL ENVIRONMENT ON MALE ORNAMENTATION, MATING BEHAVIOR, AND ATTRACTIVENESS. Evolution; International Journal of Organic Evolution, 2005, 59, 2414.	2.3	0
190	Putting sexual conflict in perspective. Trends in Ecology and Evolution, 2005, 20, 294-294.	8.7	0
191	Evolution: Exposing the Buried Costs of Reproduction. Current Biology, 2009, 19, R1117-R1119.	3.9	0
192	Threats to our only science of life: evolution and the battles over meaning. , 2012, , 54-60.		0
193	In the context of romantic attraction, beautification can increase assertiveness in women., 2020, 15, e0229162.		0
194	In the context of romantic attraction, beautification can increase assertiveness in women., 2020, 15, e0229162.		0
195	In the context of romantic attraction, beautification can increase assertiveness in women., 2020, 15, e0229162.		0
196	In the context of romantic attraction, beautification can increase assertiveness in women., 2020, 15, e0229162.		0