Jill Lancaster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9216220/publications.pdf

Version: 2024-02-01

59	2,873	26	52
papers	citations	h-index	g-index
60	60	60	2526
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hydrological controls on oviposition habitat are associated with eggâ€laying phenology of some caddisflies. Freshwater Biology, 2021, 66, 1311-1327.	2.4	3
2	Using Fractals to Describe Ecologically Relevant Patterns in Distributions of Large Rocks in Streams. Water Resources Research, 2021, 57, e2021WR029796.	4.2	5
3	Multiyear resource enrichment creates persistently higher species diversity in a landscapeâ€scale field experiment. Ecology, 2021, 102, e03451.	3.2	3
4	From Insects to Frogs, Egg–Juvenile Recruitment Can Have Persistent Effects on Population Sizes. Annual Review of Ecology, Evolution, and Systematics, 2021, 52, 67-86.	8.3	6
5	Coexistence of predatory caddisfly species may be facilitated by variations in the morphology of feeding apparatus and diet. Freshwater Biology, 2021, 66, 745-752.	2.4	2
6	Just add water: rapid assembly of new communities in previously dry riverbeds, and limited long-distance effects on existing communities. Oecologia, 2020, 194, 709-722.	2.0	5
7	Terrestrial–aquatic transitions: Local abundances and movements of mature female caddisflies are related to oviposition habits but not flight capability. Freshwater Biology, 2020, 65, 908-919.	2.4	9
8	Avoidance and aggregation create consistent egg distribution patterns of congeneric caddisflies across spatially variable oviposition landscapes. Oecologia, 2020, 192, 375-389.	2.0	7
9	Egg masses of some streamâ€dwelling caddisflies (Trichoptera: Hydrobiosidae) from Victoria, Australia. Austral Entomology, 2019, 58, 561-568.	1.4	12
10	Variations in fecundity over catchment scales: Implications for caddisfly populations spanning a thermal gradient. Freshwater Biology, 2019, 64, 723-734.	2.4	6
11	What is the right scale? Encouraging fruitful engagement for ecology with ecohydraulics. Journal of Ecohydraulics, 2018, 3, 63-76.	3.1	4
12	Aquatic versus Terrestrial Insects: Real or Presumed Differences in Population Dynamics?. Insects, 2018, 9, 157.	2.2	20
13	Barriers to dispersal: The effect of a weir on stream insect drift. River Research and Applications, 2018, 34, 1244-1253.	1.7	26
14	Itinerant, nomad or invader? A field experiment sheds light on the characteristics of successful dispersers and colonists. Freshwater Biology, 2018, 63, 1394-1406.	2.4	14
15	Species-specific prevalence of mermithid parasites in populations of six congeneric host caddisflies of <i>Ecnomus </i> McLachlan, 1864 (Trichoptera: Ecnomidae). Aquatic Insects, 2017, 38, 67-78.	0.9	4
16	Dispersal traits may reflect dispersal distances, but dispersers may not connect populations demographically. Oecologia, 2017, 184, 171-182.	2.0	30
17	Do pools impede drift dispersal by stream insects?. Freshwater Biology, 2017, 62, 1578-1586.	2.4	21
18	A fresh approach reveals how dispersal shapes metacommunity structure in a humanâ€altered landscape. Journal of Applied Ecology, 2017, 54, 588-598.	4.0	24

#	Article	IF	CITATIONS
19	A landscapeâ€scale field experiment reveals the importance of dispersal in a resourceâ€limited metacommunity. Ecology, 2017, 98, 565-575.	3.2	30
20	Populationâ€level responses of stream macroinvertebrates to drying can be densityâ€independent or densityâ€dependent. Freshwater Biology, 2015, 60, 2559-2570.	2.4	23
21	Caddisfly egg mass morphology mediates egg predation: potential costs to individuals and populations. Freshwater Biology, 2015, 60, 360-372.	2.4	17
22	Maternal behaviours may explain riffleâ€scale variations in some stream insect populations. Freshwater Biology, 2014, 59, 502-513.	2.4	25
23	Population densities and density–area relationships in a community with advective dispersal and variable mosaics of resource patches. Oecologia, 2014, 176, 985-996.	2.0	16
24	A test of the preference–performance hypothesis with stream insects: selective oviposition affects the hatching success of caddisfly eggs. Freshwater Biology, 2013, 58, 2287-2298.	2.4	17
25	Lasting effects of maternal behaviour on the distribution of a dispersive stream insect. Journal of Animal Ecology, 2011, 80, 1061-1069.	2.8	41
26	Environmental cues or conspecific attraction as causes for egg mass aggregation in hydrobiosid caddisflies. Hydrobiologia, 2011, 661, 351-362.	2.0	12
27	Plastic and unpredictable responses of stream invertebrates to leaf pack patches across sandy-bottomed streams. Marine and Freshwater Research, 2011, 62, 394.	1.3	14
28	Environmental constraints on oviposition limit egg supply of a stream insect at multiple scales. Oecologia, 2010, 163, 373-384.	2.0	45
29	Oviposition site selectivity of some stream-dwelling caddisflies. Hydrobiologia, 2010, 652, 165-178.	2.0	29
30	Experimentation at the interface of fluvial geomorphology, stream ecology and hydraulic engineering and the development of an effective, interdisciplinary river science. Earth Surface Processes and Landforms, 2010, 35, 64-77.	2.5	75
31	Linking the hydraulic world of individual organisms to ecological processes: Putting ecology into ecohydraulics. River Research and Applications, 2010, 26, 385-403.	1.7	139
32	Drift and settlement of stream insects in a complex hydraulic environment. Freshwater Biology, 2010, 55, 1020-1035.	2.4	47
33	Does dispersal control population densities in advectionâ€dominated systems? A fresh look at critical assumptions and a direct test. Journal of Animal Ecology, 2010, 79, 235-248.	2.8	32
34	Interacting environmental gradients, trade-offs and reversals in the abundance - environment relationships of stream insects: when flow is unimportant. Marine and Freshwater Research, 2009, 60, 259.	1.3	27
35	AN UNUSUAL TROPHIC SUBSIDY AND SPECIES DOMINANCE IN A TROPICAL STREAM. Ecology, 2008, 89, 2325-2334.	3.2	16
36	Aseasonality in the abundance and life history of an ecologically dominant freshwater crab in the Rift Valley, Kenya. Freshwater Biology, 2007, 52, 215-225.	2.4	33

#	Article	IF	CITATIONS
37	Sub-lethal effects of disturbance on a predatory net-spinning caddisfly. Freshwater Biology, 2007, 52, 491-499.	2.4	9
38	Spatial heterogeneity of near-bed hydraulics above a patch of river gravel. Water Resources Research, 2006, 42, .	4.2	53
39	Defining the limits to local density: alternative views of abundance-environment relationships. Freshwater Biology, 2006, 51, 783-796.	2.4	87
40	Flow- and substratum-mediated movement by a stream insect. Freshwater Biology, 2006, 51, 1053-1069.	2.4	63
41	Using neutral landscapes to identify patterns of aggregation across resource points. Ecography, 2006, 29, 385-395.	4.5	22
42	Intraguild omnivory in predatory stream insects. Journal of Animal Ecology, 2005, 74, 619-629.	2.8	72
43	Spatial point pattern analysis of available and exploited resources. Ecography, 2004, 27, 94-102.	4.5	62
44	A casting procedure for reproducing coarse-grained sedimentary surfaces. Earth Surface Processes and Landforms, 2003, 28, 787-796.	2.5	18
45	Linking landscape patterns of resource distribution with models of aggregation in ovipositing stream insects. Journal of Animal Ecology, 2003, 72, 969-978.	2.8	47
46	Inferring landscape dynamics of bog pools from scaling relationships and spatial patterns. Journal of Ecology, 2002, 90, 223-234.	4.0	73
47	Geometric scaling of microhabitat patches and their efficacy as refugia during disturbance. Journal of Animal Ecology, 2000, 69, 442-457.	2.8	89
48	The ridiculous notion of assessing ecological health and identifying the useful concepts underneath. Human and Ecological Risk Assessment (HERA), 2000, 6, 213-222.	3.4	49
49	Small-scale movements of lotic macroinvertebrates with variations in flow. Freshwater Biology, 1999, 41, 605-619.	2.4	74
50	Assembly Rules within a Contingent Ecology. Oikos, 1999, 86, 402.	2.7	437
51	Nested Hierarchies and Scale-Dependence of Mechanisms of Flow Refugium Use. Journal of the North American Benthological Society, 1997, 16, 221-238.	3.1	137
52	Field experiments on flow refugia in streams. Freshwater Biology, 1997, 37, 569-580.	2.4	85
53	The U.K. Acid Waters Monitoring Network: a preface. Freshwater Biology, 1996, 36, 129-130.	2.4	3
54	Scaling the effects of predation and disturbance in a patchy environment. Oecologia, 1996, 107, 321-331.	2.0	67

#	Article	IF	CITATIONS
55	Stream hydraulics and the distribution of microcrustacea: a role for refugia?. Freshwater Biology, 1995, 33, 469-484.	2.4	101
56	Microcrustacean prey and macroinvertebrate predators in a stream food web. Freshwater Biology, 1995, 34, 123-134.	2.4	61
57	Flow Refugia and the Microdistribution of Lotic Macroinvertebrates. Journal of the North American Benthological Society, 1993, 12, 385-393.	3.1	267
58	Competition for space by predators in streams: field experiments on a net-spinning caddisfly. Freshwater Biology, 1988, 20, 185-193.	2.4	41
59	Measuring the Hydraulic Landscapes of Stream-Dwelling Invertebrates for Ecological Research. , 0, , 383-406.		1