
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9214971/publications.pdf Version: 2024-02-01

1Computational Thinking and Metacognition. TechTrends, 2022, 66, 405-411.2.3122POGIL in CS1: Evidence for Student Learning and Belonging., 2022,103Advancing Opportunities for CS Teachers., 2022,24Breaking the Code: Confronting Racism in Computer Science through Community, Criticality, and Critizenship. TechTrends, 2022, 66, 450-458.2.395Introduction: Computational thinking in preK-5., 2022,26Professional Development and Support for POGIL in Computer Science., 2022,37Who Belongs in Computer Science through community, criticality, and citizenship. Communications of the ACM, 2022, 65, 42-44.4.59Models for Computer Science Teacher Preparation., 2022,010Teaching in an open village: a case study on culturally responsive computing in compulsory education. Computer Science Education, 2021, 31, 462-488.3.7	ATIONS
3 Advancing Opportunities for CS Teachers., 2022, ,. 2 4 Breaking the Code: Confronting Racism in Computer Science through Community, Criticality, and 2.3 9 5 Introduction: Computational thinking in preK-5., 2022, ,. 2 6 Professional Development and Support for POGIL in Computer Science., 2022, ,. 3 7 Who Belongs in Computer Science?., 2022, ,. 6 8 Toward justice in computer science through community, criticality, and citizenship. Communications of the ACM, 2022, 65, 42-44. 12 9 Models for Computer Science Teacher Preparation., 2022, ,. 0 10 Teaching in an open village: a case study on culturally responsive computing in compulsory education. 3.7	
4 Breaking the Code: Confronting Racism in Computer Science through Community, Criticality, and Citizenship. TechTrends, 2022, 66, 450-458. 2.3 9 5 Introduction: Computational thinking in preK-5., 2022, ,. 2 6 Professional Development and Support for POGIL in Computer Science., 2022, ,. 3 7 Who Belongs in Computer Science?., 2022, ,. 6 8 Toward justice in computer science through community, criticality, and citizenship. Communications of the ACM, 2022, 65, 42-44. 12 9 Models for Computer Science Teacher Preparation., 2022, ,. 0 10 Teaching in an open village: a case study on culturally responsive computing in compulsory education. 2.7	
4 Citizenship. TechTrends, 2022, 66, 450-458. 2.3 9 5 Introduction: Computational thinking in preK-5., 2022, ,. 2 6 Professional Development and Support for POGIL in Computer Science., 2022, ,. 3 7 Who Belongs in Computer Science?., 2022, ,. 6 8 Toward justice in computer science through community, criticality, and citizenship. Communications of the ACM, 2022, 65, 42-44. 4.5 12 9 Models for Computer Science Teacher Preparation., 2022, ,. 0 0 10 Teaching in an open village: a case study on culturally responsive computing in compulsory education. 3.7	
 Professional Development and Support for POGIL in Computer Science., 2022,,. Who Belongs in Computer Science?., 2022,,. Toward justice in computer science through community, criticality, and citizenship. Communications Toward justice in computer science through community, criticality, and citizenship. Communications Models for Computer Science Teacher Preparation., 2022,,. Teaching in an open village: a case study on culturally responsive computing in compulsory education. 	
 7 Who Belongs in Computer Science?., 2022, , . 8 Toward justice in computer science through community, criticality, and citizenship. Communications 4.5 12 9 Models for Computer Science Teacher Preparation., 2022, , . 0 Teaching in an open village: a case study on culturally responsive computing in compulsory education. 	
 Toward justice in computer science through community, criticality, and citizenship. Communications of the ACM, 2022, 65, 42-44. Models for Computer Science Teacher Preparation., 2022, ,. Teaching in an open village: a case study on culturally responsive computing in compulsory education. 	
 of the ACM, 2022, 65, 42-44. Models for Computer Science Teacher Preparation. , 2022, , . Teaching in an open village: a case study on culturally responsive computing in compulsory education. 	
Teaching in an open village: a case study on culturally responsive computing in compulsory education.	
11Preparing Special Education Preservice Teachers to Teach Computational Thinking and Computer Science in Mathematics. Teacher Education and Special Education, 2021, 44, 221-238.2.68	
Preparing Teachers for Computational Thinking Integration in K-12., 2021, , . 2	
13Self-efficacy Profiles for Computer Science Teachers. , 2021, , .5	
Measuring Students' Sense of Belonging in Introductory CS Courses. , 2021, , . 32	
Collaborative Learning, Self-Efficacy, and Student Performance in CS1 POGIL. , 2021, , . 21	
16Transitioning to remote learning: Lessons from supporting Kâ€12 teachers through a MOOC. British6.32816Journal of Educational Technology, 2021, 52, 1377-1393.6.328	
¹⁷ Self-evaluation Interventions: Impact on Self-efficacy and Performance in Introductory Programming. 3.5 6 ACM Transactions on Computing Education, 2021, 21, 1-28.	

18 Teacher Views on Computational Thinking as a Pathway to Computer Science., 2021,,.

Δμανι Υλσαν

#	Article	IF	CITATIONS
19	Culturally Responsive Debugging: a Method to Support Cultural Experts' Early Engagement with Code. TechTrends, 2021, 65, 771-784.	2.3	3
20	Professorial Advancement Initiative: A Cross-Institutional Collaboration to Increase Faculty Diversity in STEM. Frontiers in Psychology, 2021, 12, 733173.	2.1	0
21	Computational thinking in elementary classrooms: Using classroom dialogue to measure equitable participation. , 2021, , .		0
22	Teachers' Perceptions of Student Misconceptions in Introductory Programming. Journal of Educational Computing Research, 2020, 58, 364-397.	5.5	21
23	Unplugged Approaches to Computational Thinking: a Historical Perspective. TechTrends, 2020, 64, 29-36.	2.3	73
24	The Forgotten Scholar: Underrepresented Minority Postdoc Experiences in STEM Fields. Educational Studies - AESA, 2020, 56, 160-185.	0.9	25
25	Providing Access and Opportunity for Computational Thinking and Computer Science to Support Mathematics for Students With Disabilities. Journal of Special Education Technology, 2020, , 016264342097856.	2.2	9
26	Smart Learning. Applied Sciences (Switzerland), 2020, 10, 6964.	2.5	10
27	Applying Levels of Abstraction to Mathematics Word Problems. TechTrends, 2020, 64, 395-403.	2.3	9
28	Teacher implementation profiles for integrating computational thinking into elementary mathematics and science instruction. Education and Information Technologies, 2020, 25, 3161-3188.	5.7	44
29	Computing and community in formal education. Communications of the ACM, 2020, 63, 18-21.	4.5	12
30	Integrating Computing into K-16 Education. , 2020, , .		0
31	Integrating Computing and Computational Thinking into K-12 STEM Learning. , 2020, , .		11
32	Self-Regulation for High School Learners in a MOOC Computer Science Course. , 2020, , .		7
33	Evaluation and assessment for improving CS teacher effectiveness. ACM Inroads, 2020, 11, 35-41.	0.6	4
34	Taking the next step: supporting postdocs to develop an independent path in academia. International Journal of STEM Education, 2019, 6, .	5.0	21
35	Computer Science Pedagogical Content Knowledge. ACM Transactions on Computing Education, 2019, 19, 1-24.	3.5	31

#	Article	IF	CITATIONS
37	Equitable Learning Environments in K-12 Computing. ACM Transactions on Computing Education, 2019, 19, 1-16.	3.5	26
38	Computer Science Educators Stack Exchange. , 2019, , .		8
39	Motivation, Attitudes, and Dispositions. , 2019, , 801-826.		15
40	Teaching Media and Information Literacy in the 21st Century. Advances in Library and Information Science, 2019, , 77-89.	0.2	0
41	Who Needs What: Recommendations for Designing Effective Online Professional Development for Computer Science Teachers. Journal of Research on Technology in Education, 2018, 50, 164-181.	6.5	48
42	Approach to Non-Intrusive Load Monitoring using Factorial Hidden Markov Model. , 2018, , .		14
43	Computational thinking in elementary classrooms: measuring teacher understanding of computational ideas for teaching science. Computer Science Education, 2018, 28, 371-400.	3.7	53
44	Computer Science and Computational Thinking in the Curriculum: Research and Practice. Springer International Handbooks of Education, 2018, , 89-106.	0.1	8
45	Local Classrooms, Global Technologies: Toward the Integration of Sociotechnical Macroethical Issues Into Teacher Education. Bulletin of Science, Technology and Society, 2018, 38, 13-22.	2.9	2
46	Computer Science and Computational Thinking in the Curriculum: Research and Practice. Springer International Handbooks of Education, 2018, , 1-18.	0.1	0
47	Computational Thinking in K-12: In-service Teacher Perceptions of Computational Thinking. , 2018, , 151-164.		43
48	Computer Science and Computational Thinking in the Curriculum: Research and Practice. Springer International Handbooks of Education, 2018, , 1-18.	0.1	2
49	Teaching Media and Information Literacy in the 21st Century. , 2018, , 2292-2302.		0
50	Computational Thinking in Teacher Education. , 2017, , 205-220.		95
51	Computational thinking for teacher education. Communications of the ACM, 2017, 60, 55-62.	4.5	154
52	Students' Emotional Reactions to Programming Projects in Introduction to Programming. , 2017, , .		71
53	Effects of multimedia story reading and questioning on preschoolers' vocabulary learning, story comprehension and reading engagement. Educational Technology Research and Development, 2017, 65, 1523-1545.	2.8	49
54	Computer Science Teacher Professional Development. , 2017, , .		5

#	Article	IF	CITATIONS
55	Computational Thinking as an Emerging Competence Domain. Technical and Vocational Education and Training, 2017, , 1051-1067.	0.4	46
56	Fostering creativity through computing. Communications of the ACM, 2017, 60, 31-33.	4.5	26
57	Expanding computer science education in schools: understanding teacher experiences and challenges. Computer Science Education, 2016, 26, 235-254.	3.7	169
58	Learning to Program. , 2016, , .		123
59	Methodological Rigor and Theoretical Foundations of CS Education Research. , 2016, , .		63
60	Results from a Survey of Faculty Adoption of Process Oriented Guided Inquiry Learning (POGIL) in Computer Science. , 2016, , .		59
61	Measuring computer science pedagogical content knowledge. , 2016, , .		18
62	Exploring Lightweight Teams in a Distributed Learning Environment. , 2016, , .		15
63	Case-Based Instruction in STEM: Analysis of Student Confidence. , 2016, , .		Ο
64	Computational Thinking for All: Pedagogical Approaches to Embedding 21st Century Problem Solving in K-12 Classrooms. TechTrends, 2016, 60, 565-568.	2.3	244
65	Computational Thinking and Media & Information Literacy: An Integrated Approach to Teaching Twenty-First Century Skills. TechTrends, 2016, 60, 510-516.	2.3	96
66	The Influence of Problem Solving Abilities on Students' Performance on Different Assessment Tasks in CS1. , 2016, , .		29
67	Challenges of a Computer Science Classroom. , 2015, , .		14
68	Computational thinking in compulsory education: Towards an agenda for research and practice. Education and Information Technologies, 2015, 20, 715-728.	5.7	357
69	Learning in Distributed Low-Stakes Teams. , 2015, , .		5
70	Case Studies in Engineering. , 2014, , 161-180.		16
71	Computational Thinking in Elementary and Secondary Teacher Education. ACM Transactions on Computing Education, 2014, 14, 1-16.	3.5	314
72	Caseâ€based instruction: Improving students' conceptual understanding through cases in a mechanical engineering course. Journal of Research in Science Teaching, 2014, 51, 659-677.	3.3	38

#	Article	IF	CITATIONS
73	Integration of Tobacco Control in Masters of Public Health Curricula of India. Asian Pacific Journal of Cancer Prevention, 2014, 15, 5611-5615.	1.2	5
74	Risks and uncertainties in virtual worlds: an educators' perspective. Journal of Computing in Higher Education, 2013, 25, 49-67.	6.1	9
75	Learning to teach computer science. Communications of the ACM, 2012, 55, 31-33.	4.5	21
76	Problemâ€based Learning: Influence on Students' Learning in an Electrical Engineering Course. Journal of Engineering Education, 2011, 100, 253-280.	3.0	250
77	If a picture is worth a thousand words is video worth a million? Differences in affective and cognitive processing of video and text cases. Journal of Computing in Higher Education, 2011, 23, 15-37.	6.1	71
78	Introducing computational thinking in education courses. , 2011, , .		150
79	Does context matter? Engineering students' approaches to global vs. local problems. , 2010, , .		1
80	Lessons Learned: Implementing the Case Teaching Method in a Mechanical Engineering Course. Journal of Engineering Education, 2010, 99, 55-69.	3.0	105
81	Implementing Case Studies in a Plant Pathology Course: Impact on Student Learning and Engagement. Journal of Natural Resources and Life Sciences Education, 2009, 38, 50-55.	0.2	21
82	Instructing special education preâ€service teachers through literacy video cases. Teaching Education, 2009, 20, 149-162.	1.3	14
83	Enhancing creativity in synthetic biology with Interactive Virtual Environments. , 2009, , .		7
84	Work in progress - assessing the engineering curriculum through Bloom's Taxonomy. , 2008, , .		2
85	What Works for Them? Preservice Teachers' Perceptions of Their Learning from Video Cases. Action in Teacher Education, 2008, 29, 27-38.	0.7	15
86	Using Hypermedia for Learning Complex Concepts in Chemistry: A Qualitative Study on the Relationship Between Prior Knowledge, Beliefs, and Motivation. Education and Information Technologies, 2006, 11, 33-69.	5.7	13