Ruiliang Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9214652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Core–Satellite Polydopamine–Gadoliniumâ€Metallofullerene Nanotheranostics for Multimodal Imaging Guided Combination Cancer Therapy. Advanced Materials, 2017, 29, 1701013.	21.0	185
2	Dynamically Reversible Iron Oxide Nanoparticle Assemblies for Targeted Amplification of T1-Weighted Magnetic Resonance Imaging of Tumors. Nano Letters, 2019, 19, 4213-4220.	9.1	137
3	Suppressing Nanoparticle-Mononuclear Phagocyte System Interactions of Two-Dimensional Gold Nanorings for Improved Tumor Accumulation and Photothermal Ablation of Tumors. ACS Nano, 2017, 11, 10539-10548.	14.6	117
4	<i>T</i> ₁ – <i>T</i> ₂ Dual-Modal Magnetic Resonance Imaging: From Molecular Basis to Contrast Agents. ACS Nano, 2017, 11, 5227-5232.	14.6	108
5	An Ultrahighâ€Fieldâ€Tailored <i>T</i> ₁ – <i>T</i> ₂ Dualâ€Mode MRI Contrast Agent for Highâ€Performance Vascular Imaging. Advanced Materials, 2021, 33, e2004917.	21.0	69
6	Early stratification of radiotherapy response by activatable inflammation magnetic resonance imaging. Nature Communications, 2020, 11, 3032.	12.8	62
7	Olfactory sensory experience regulates gliomagenesis via neuronal IGF1. Nature, 2022, 606, 550-556.	27.8	49
8	Fast, Na ⁺ /K ⁺ pump driven, steadyâ€state transcytolemmal water exchange in neuronal tissue: A study of rat brain cortical cultures. Magnetic Resonance in Medicine, 2018, 79, 3207-3217.	3.0	47
9	Magnetic resonance measurements of cellular and sub-cellular membrane structures in live and fixed neural tissue. ELife, 2019, 8, .	6.0	40
10	Reduction of higher-order occipital GABA and impaired visual perception in acute major depressive disorder. Molecular Psychiatry, 2021, 26, 6747-6755.	7.9	36
11	Efficient 2D MRI relaxometry using compressed sensing. Journal of Magnetic Resonance, 2015, 255, 88-99.	2.1	35
12	Assessing the sensitivity of diffusion MRI to detect neuronal activity directly. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1728-37.	7.1	35
13	An Albumin-Binding <i>T</i> ₁ – <i>T</i> ₂ Dual-Modal MRI Contrast Agents for Improved Sensitivity and Accuracy in Tumor Imaging. Bioconjugate Chemistry, 2019, 30, 1821-1829.	3.6	32
14	Feasibility of filter-exchange imaging (FEXI) in measuring different exchange processes in human brain. NeuroImage, 2020, 219, 117039.	4.2	26
15	A framework for accurate determination of the T2 distribution from multiple echo magnitude MRI images. Journal of Magnetic Resonance, 2014, 244, 53-63.	2.1	25
16	Quantification of Tumor Vascular Permeability and Blood Volume by Positron Emission Tomography. Theranostics, 2017, 7, 2363-2376.	10.0	23
17	NMR shutterâ€speed elucidates apparent population inversion of ¹ H ₂ O signals due to active transmembrane water cycling. Magnetic Resonance in Medicine, 2019, 82, 411-424.	3.0	22
18	Brain active transmembrane water cycling measured by MR isÂassociated with neuronal activity. Magnetic Resonance in Medicine, 2019, 81, 1280-1295.	3.0	21

Ruiliang Bai

#	Article	IF	CITATIONS
19	Fast, accurate 2D-MR relaxation exchange spectroscopy (REXSY): Beyond compressed sensing. Journal of Chemical Physics, 2016, 145, 154202.	3.0	19
20	Solving 2D Fredholm Integral from Incomplete Measurements Using Compressive Sensing. SIAM Journal on Imaging Sciences, 2014, 7, 1775-1798.	2.2	18
21	Shutterâ€Speed DCEâ€MRI Analyses of Human Glioblastoma Multiforme (GBM) Data. Journal of Magnetic Resonance Imaging, 2020, 52, 850-863.	3.4	18
22	Simultaneous calcium fluorescence imaging and MR of <i>ex vivo</i> organotypic cortical cultures: a new test bed for functional MRI. NMR in Biomedicine, 2015, 28, 1726-1738.	2.8	17
23	Convolutional neural network for accelerating the computation of the extended Tofts model in <scp>dynamic contrastâ€enhanced magnetic resonance imaging</scp> . Journal of Magnetic Resonance Imaging, 2021, 53, 1898-1910.	3.4	17
24	NMR water selfâ€diffusion and relaxation studies on sodium polyacrylate solutions and gels in physiologic ionic solutions. Journal of Applied Polymer Science, 2014, 131, .	2.6	10
25	In Vivo Clonal Analysis Reveals Development Heterogeneity of Oligodendrocyte Precursor Cells Derived from Distinct Germinal Zones. Advanced Science, 2021, 8, e2102274.	11.2	9
26	Evaluation of Submillimeter Diffusion Imaging of the Macaque Brain Using Readout-Segmented EPI at 7ÂT. IEEE Transactions on Biomedical Engineering, 2019, 66, 2945-2951.	4.2	7
27	Secondary Degeneration of White Matter After Focal Sensorimotor Cortical Ischemic Stroke in Rats. Frontiers in Neuroscience, 2020, 14, 611696.	2.8	6
28	Multi-parameter MRI to investigate vasculature modulation and photo-thermal ablation combination therapy against cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2179-2189.	3.3	4
29	Ensemble learning accurately predicts the potential benefits of thrombolytic therapy in acute ischemic stroke. Quantitative Imaging in Medicine and Surgery, 2021, 11, 3978-3989.	2.0	4
30	Short-Range Structural Connections Are More Severely Damaged in Early-Stage MS. American Journal of Neuroradiology, 2022, 43, 361-367.	2.4	4
31	Abnormal brain functional and structural connectivity between the left supplementary motor area and inferior frontal gyrus in moyamoya disease. BMC Neurology, 2022, 22, 179.	1.8	4
32	The direction-dependence of apparent water exchange rate in human white matter. NeuroImage, 2022, 247, 118831.	4.2	3
33	2D probabilistic undersampling pattern optimization for MR image reconstruction. Medical Image Analysis, 2022, 77, 102346.	11.6	2
34	Performance Comparison of Different Neuroimaging Methods for Predicting Upper Limb Motor Outcomes in Patients after Stroke. Neural Plasticity, 2022, 2022, 1-10.	2.2	2
35	On Quantifying Local Geometric Structures of Fiber Tracts. Lecture Notes in Computer Science, 2018, , 392-400.	1.3	1
36	Multi-Component Water Dynamics and Exchange in Brain Cortical Tissue Probed via In-Vitro D-T2 2D Correlation NMR. Biophysical Journal, 2015, 108, 615a.	0.5	0

#	Article	IF	CITATIONS
37	Consideration of transmembrane water exchange in pharmacokinetic model significantly improves the accuracy of DCE-MRI in estimating cellular density: A pilot study in glioblastoma multiforme. Magnetic Resonance Letters, 2022, 2, 243-254.	1.3	0