Kwanghun Chung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9213212/publications.pdf

Version: 2024-02-01

159585 214800 7,079 54 30 47 citations g-index h-index papers 58 58 58 9195 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structural and molecular interrogation of intact biological systems. Nature, 2013, 497, 332-337.	27.8	1,765
2	CLARITY for mapping the nervous system. Nature Methods, 2013, 10, 508-513.	19.0	654
3	Multi-sensory Gamma Stimulation Ameliorates Alzheimer's-Associated Pathology and Improves Cognition. Cell, 2019, 177, 256-271.e22.	28.9	423
4	Simple, Scalable Proteomic Imaging for High-Dimensional Profiling of Intact Systems. Cell, 2015, 163, 1500-1514.	28.9	391
5	Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Nature Methods, 2008, 5, 637-643.	19.0	354
6	Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nature Biotechnology, 2016, 34, 973-981.	17.5	351
7	Tissue clearing and its applications inÂneuroscience. Nature Reviews Neuroscience, 2020, 21, 61-79.	10.2	350
8	Selfâ€organized developmental patterning and differentiation in cerebral organoids. EMBO Journal, 2017, 36, 1316-1329.	7.8	300
9	Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nature Biotechnology, 2019, 37, 73-83.	17.5	262
10	Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6274-83.	7.1	195
11	Autism genes converge on asynchronous development of shared neuron classes. Nature, 2022, 602, 268-273.	27.8	180
12	Spatial mapping of protein composition and tissue organization: a primer for multiplexed antibody-based imaging. Nature Methods, 2022, 19, 284-295.	19.0	156
13	A microfluidic array for large-scale ordering and orientation of embryos. Nature Methods, 2011, 8, 171-176.	19.0	133
14	In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease. Science Translational Medicine, 2017, 9, .	12.4	133
15	Imaging Single-Cell Signaling Dynamics with a Deterministic High-Density Single-Cell Trap Array. Analytical Chemistry, 2011, 83, 7044-7052.	6.5	130
16	Cellular anatomy of the mouse primary motor cortex. Nature, 2021, 598, 159-166.	27.8	117
17	Microfluidics-enabled phenotyping, imaging, and screening of multicellular organisms. Lab on A Chip, 2010, 10, 1509.	6.0	104
18	Microfluidic chamber arrays for whole-organism behavior-based chemical screening. Lab on A Chip, 2011, 11, 3689.	6.0	103

#	Article	IF	Citations
19	Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions. Nature Communications, 2022, 13, 1799.	12.8	88
20	Computer-enhanced high-throughput genetic screens of C. elegans in a microfluidic system. Lab on A Chip, 2009, 9, 38-40.	6.0	70
21	Automated high-throughput cell microsurgery on-chip. Lab on A Chip, 2009, 9, 2764.	6.0	69
22	Npas4 Is a Critical Regulator of Learning-Induced Plasticity at Mossy Fiber-CA3 Synapses during Contextual Memory Formation. Neuron, 2018, 97, 1137-1152.e5.	8.1	68
23	Light microscopy mapping of connections in the intact brain. Trends in Cognitive Sciences, 2013, 17, 596-599.	7.8	66
24	Gene Regulation by MAPK Substrate Competition. Developmental Cell, 2011, 20, 880-887.	7.0	55
25	Elasticizing tissues for reversible shape transformation and accelerated molecular labeling. Nature Methods, 2020, 17, 609-613.	19.0	49
26	Multiscale 3D phenotyping of human cerebral organoids. Scientific Reports, 2020, 10, 21487.	3.3	46
27	Whole-Brain Analysis of Cells and Circuits by Tissue Clearing and Light-Sheet Microscopy. Journal of Neuroscience, 2018, 38, 9330-9337.	3.6	45
28	The open connectome project data cluster. , 2013, , .		38
29	Basic principles of hydrogel-based tissue transformation technologies and their applications. Cell, 2021, 184, 4115-4136.	28.9	37
30	Multiplex pressure measurement in microsystems using volume displacement of particle suspensions. Lab on A Chip, 2009, 9, 3345.	6.0	34
31	How does dextran sulfate prevent heat induced aggregation of protein?: The mechanism and its limitation as aggregation inhibitor. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 249-257.	2.3	33
32	Strong valid inequalities for orthogonal disjunctions and bilinear covering sets. Mathematical Programming, 2010, 124, 481-512.	2.4	30
33	Depolarization signatures map gold nanorods within biological tissue. Nature Photonics, 2017, 11, 583-588.	31.4	25
34	A computational statistics approach for estimating the spatial range of morphogen gradients. Development (Cambridge), 2011, 138, 4867-4874.	2.5	24
35	Epitope-preserving magnified analysis of proteome (eMAP). Science Advances, 2021, 7, eabf6589.	10.3	22

#	Article	IF	CITATIONS
37	Min–max regret version of a scheduling problem with outsourcing decisions under processing time uncertainty. European Journal of Operational Research, 2016, 252, 367-375.	5.7	19
38	Label-free volumetric optical imaging of intact murine brains. Scientific Reports, 2017, 7, 46306.	3.3	13
39	Interruption Cost Evaluation by Cognitive Workload and Task Performance in Interruption Coordination Modes for Human–Computer Interaction Tasks. Applied Sciences (Switzerland), 2018, 8, 1780.	2.5	12
40	Functional dissection of neural circuitry using a genetic reporter for fMRI. Nature Neuroscience, 2022, 25, 390-398.	14.8	11
41	Whole-brain imaging reaches new heights (and lengths). ELife, 2016, 5, e13367.	6.0	10
42	Rapid drug screen using 3D tumor organoids. Science Translational Medicine, 2018, 10, .	12.4	6
43	Learning-based long-range axon tracing in dense scenes. , 2018, , .		5
44	Staffing a service system with appointment-based customer arrivals. Journal of the Operational Research Society, 2014, 65, 1533-1543.	3.4	4
45	Lifted inequalities for $\$$ 0mathord $\{-\}1$ \$\$ mixed-integer bilinear covering sets. Mathematical Programming, 2014, 145, 403-450.	2.4	2
46	A Joint Optimal Decision on Shipment Size and Carbon Reduction under Direct Shipment and Peddling Distribution Strategies. Sustainability, 2017, 9, 2061.	3.2	2
47	Optimization of Capacity Allocation Models with Effort Dependent Demand in Global Supply Chain. Sustainability, 2022, 14, 1375.	3.2	2
48	Automated dense neuronal fiber tracing and connectivity mapping at cellular level., 2017,,.		1
49	Toward off-the-shelf adoptive T cell therapies. Science Translational Medicine, 2017, 9, .	12.4	1
50	Kill or be killed: The epic battle between Zika virus and cells revealed. Science Translational Medicine, 2017, 9, .	12.4	0
51	Modeling human brain development. Science Translational Medicine, 2017, 9, .	12.4	0
52	Accelerating the production of insulating brain cells. Science Translational Medicine, 2017, 9, .	12.4	0
53	A bigger and better picture of clinical samples. Science Translational Medicine, 2017, 9, .	12.4	0
54	A 3D view of tumor heterogeneity. Science Translational Medicine, 2017, 9, .	12.4	0