Jennifer A Surtees

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9212955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complex mutation profiles in mismatch repair and ribonucleotide reductase mutants reveal novel repair substrate specificity of MutS homolog (MSH) complexes. Genetics, 2022, 221, .	2.9	7
2	A selection-based next generation sequencing approach to develop robust, genotype-specific mutation profiles in Saccharomyces cerevisiae. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	4
3	Microscopic Communities: Interdisciplinary Exploration of Microbes in the Classroom ^{â€} . Journal of Microbiology and Biology Education, 2021, 22, .	1.0	0
4	Tracking Expansions of Stable and Threshold Length Trinucleotide Repeat Tracts In Vivo and In Vitro Using Saccharomyces cerevisiae. Methods in Molecular Biology, 2020, 2056, 25-68.	0.9	2
5	Extracting and Measuring dNTP Pools in Saccharomyces cerevisiae. Methods in Molecular Biology, 2019, 1999, 103-127.	0.9	4
6	Measuring Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo in Saccharomyces cerevisiae. Methods in Molecular Biology, 2018, 1672, 439-470.	0.9	2
7	Coordination of Rad1–Rad10 interactions with Msh2–Msh3, Saw1 and RPA is essential for functional 3′ non-homologous tail removal. Nucleic Acids Research, 2018, 46, 5075-5096.	14.5	10
8	Distinct roles of XPF-ERCC1 and Rad1-Rad10-Saw1 in replication-coupled and uncoupled inter-strand crosslink repair. Nature Communications, 2018, 9, 2025.	12.8	13
9	Large-scale production of recombinant Saw1 in Escherichia coli. Protein Expression and Purification, 2017, 133, 75-80.	1.3	3
10	mlh3 mutations in baker's yeast alter meiotic recombination outcomes by increasing noncrossover events genome-wide. PLoS Genetics, 2017, 13, e1006974.	3.5	32
11	The mismatch repair and meiotic recombination endonuclease Mlh1-Mlh3 is activated by polymer formation and can cleave DNA substrates in trans. PLoS Biology, 2017, 15, e2001164.	5.6	63
12	Dynamic DNA binding licenses a repair factor to bypass roadblocks in search of DNA lesions. Nature Communications, 2016, 7, 10607.	12.8	44
13	<i>MSH3</i> Promotes Dynamic Behavior of Trinucleotide Repeat Tracts <i>In Vivo</i> . Genetics, 2015, 200, 737-754.	2.9	29
14	Mlh1-Mlh3, a Meiotic Crossover and DNA Mismatch Repair Factor, Is a Msh2-Msh3-stimulated Endonuclease. Journal of Biological Chemistry, 2014, 289, 5664-5673.	3.4	124
15	ATP binding and hydrolysis by Saccharomyces cerevisiae Msh2–Msh3 are differentially modulated by mismatch and double-strand break repair DNA substrates. DNA Repair, 2014, 18, 18-30.	2.8	13
16	Distinct Requirements within the Msh3 Nucleotide Binding Pocket for Mismatch and Double-Strand Break Repair. Journal of Molecular Biology, 2013, 425, 1881-1898.	4.2	12
17	Role of Saw1 in Rad1/Rad10 complex assembly at recombination intermediates in budding yeast. EMBO Journal, 2013, 32, 461-472.	7.8	34
18	Msh2-Msh3 Interferes with Okazaki Fragment Processing to Promote Trinucleotide Repeat Expansions. Cell Reports, 2012, 2, 216-222.	6.4	40

JENNIFER A SURTEES

#	Article	IF	CITATIONS
19	Multiple Factors Insulate Msh2–Msh6 Mismatch Repair Activity from Defects in Msh2 Domain I. Journal of Molecular Biology, 2011, 411, 765-780.	4.2	19
20	Broad Overexpression of Ribonucleotide Reductase Genes in Mice Specifically Induces Lung Neoplasms. Cancer Research, 2008, 68, 2652-2660.	0.9	83
21	Saccharomyces cerevisiae MSH2–MSH3 and MSH2–MSH6 Complexes Display Distinct Requirements for DNA Binding Domain I in Mismatch Recognition. Journal of Molecular Biology, 2007, 366, 53-66.	4.2	46
22	Dynamic Basis for One-Dimensional DNA Scanning by the Mismatch Repair Complex Msh2-Msh6. Molecular Cell, 2007, 28, 359-370.	9.7	215
23	Mismatch Repair Factor MSH2-MSH3 Binds and Alters the Conformation of Branched DNA Structures Predicted to form During Genetic Recombination. Journal of Molecular Biology, 2006, 360, 523-536.	4.2	78
24	Detection of High-Affinity and Sliding Clamp Modes for MSH2-MSH6 by Single-Molecule Unzipping Force Analysis. Molecular Cell, 2005, 20, 771-781.	9.7	53
25	Replication Factors License Exonuclease I in Mismatch Repair. Molecular Cell, 2004, 15, 164-166.	9.7	6
26	Plasmid and Chromosome Traffic Control: How ParA and ParB Drive Partition. Current Topics in Developmental Biology, 2003, 56, 145-180.	2.2	50
27	The DNA Binding Domains of P1 ParB and the Architecture of the P1 Plasmid Partition Complex. Journal of Biological Chemistry, 2001, 276, 12385-12394.	3.4	59
28	Stoichiometry of P1 Plasmid Partition Complexes. Journal of Biological Chemistry, 2000, 275, 8213-8219.	3.4	50
29	P1 ParB Domain Structure Includes Two Independent Multimerization Domains. Journal of Bacteriology, 1999, 181, 5898-5908.	2.2	58