Antonella Spinazzola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9212796/publications.pdf

Version: 2024-02-01

62 papers 4,847

36 h-index 58 g-index

70 all docs

70 docs citations

70 times ranked 4541 citing authors

#	Article	IF	CITATIONS
1	2 deoxy-D-glucose augments the mitochondrial respiratory chain in heart. Scientific Reports, 2022, 12, 6890.	3.3	5
2	Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): Position paper on diagnosis, prognosis, and treatment by the <scp>MNGIE</scp> International Network. Journal of Inherited Metabolic Disease, 2021, 44, 376-387.	3.6	47
3	Uniparental isodisomy of chromosome 2 causing MRPL44-related multisystem mitochondrial disease. Molecular Biology Reports, 2021, 48, 2093-2104.	2.3	1
4	2-Deoxy-D-glucose couples mitochondrial DNA replication with mitochondrial fitness and promotes the selection of wild-type over mutant mitochondrial DNA. Nature Communications, 2021, 12, 6997.	12.8	12
5	Identification of a novel heterozygous guanosine monophosphate reductase (⟨i⟩GMPR⟨ i⟩) variant in a patient with a lateâ€onset disorder of mitochondrial DNA maintenance. Clinical Genetics, 2020, 97, 276-286.	2.0	7
6	Mechanisms of onset and accumulation of mtDNA mutations. , 2020, , 195-219.		0
7	Recurrent De Novo NAHR Reciprocal Duplications in the ATAD3 Gene Cluster Cause a Neurogenetic Trait with Perturbed Cholesterol and Mitochondrial Metabolism. American Journal of Human Genetics, 2020, 106, 272-279.	6.2	33
8	Parkinsonism and spastic paraplegia type 7: Expanding the spectrum of mitochondrial Parkinsonism. Movement Disorders, 2019, 34, 1547-1561.	3.9	44
9	Beyond the unwinding: role of TOP1MT in mitochondrial translation. Cell Cycle, 2019, 18, 2377-2384.	2.6	11
10	MRPS25 mutations impair mitochondrial translation and cause encephalomyopathy. Human Molecular Genetics, 2019, 28, 2711-2719.	2.9	33
11	Reply to: "Mitochondrial Parkinsonism due to <i>SPG7/Paraplegin</i> variants with secondary mtDNA depletion― Movement Disorders, 2019, 34, 1932-1933.	3.9	0
12	The mitochondrial type IB topoisomerase drives mitochondrial translation and carcinogenesis. Nature Communications, 2019, 10, 83.	12.8	38
13	Transcript availability dictates the balance between strand-asynchronous and strand-coupled mitochondrial DNA replication. Nucleic Acids Research, 2018, 46, 10771-10781.	14.5	20
14	$\langle \text{scp} \rangle \text{LETM} \langle \text{scp} \rangle$ 1 couples mitochondrial $\langle \text{scp} \rangle \rangle \rangle$ metabolism and nutrient preference. EMBO Molecular Medicine, 2018, 10, .	6.9	41
15	Mitochondrial ribosomal protein S25 (MRPS25) mutations impair ribosomal assembly and cause mitochondrial encephalomyopathy with partial agenesis of the corpus callosum. Neuromuscular Disorders, 2018, 28, S30-S31.	0.6	0
16	Clinicopathologic and molecular spectrum of $\langle i \rangle$ RNASEH1 $\langle i \rangle$ -related mitochondrial disease. Neurology: Genetics, 2017, 3, e149.	1.9	19
17	Aberrant ribonucleotide incorporation and multiple deletions in mitochondrial DNA of the murine MPV17 disease model. Nucleic Acids Research, 2017, 45, 12808-12815.	14.5	43
18	Reply: Genotype-phenotype correlation in ATAD3A deletions: not just of scientific relevance. Brain, 2017, 140, e67-e67.	7.6	9

#	Article	IF	CITATIONS
19	ATAD3 gene cluster deletions cause cerebellar dysfunction associated with altered mitochondrial DNA and cholesterol metabolism. Brain, 2017, 140, 1595-1610.	7.6	105
20	Pathological ribonuclease H1 causes R-loop depletion and aberrant DNA segregation in mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4276-85.	7.1	48
21	Mitochondrial quality control: Cell-type-dependent responses to pathological mutant mitochondrial DNA. Autophagy, 2016, 12, 2098-2112.	9.1	21
22	MPV17 Loss Causes Deoxynucleotide Insufficiency and Slow DNA Replication in Mitochondria. PLoS Genetics, 2016, 12, e1005779.	3.5	67
23	Amino Acid Starvation Has Opposite Effects on Mitochondrial and Cytosolic Protein Synthesis. PLoS ONE, 2014, 9, e93597.	2.5	48
24	MPV17L2 is required for ribosome assembly in mitochondria. Nucleic Acids Research, 2014, 42, 8500-8515.	14.5	56
25	Mitochondrial diseases: Translation matters. Molecular and Cellular Neurosciences, 2013, 55, 1-12.	2.2	62
26	Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis. Nucleic Acids Research, 2012, 40, 6109-6121.	14.5	195
27	Mitochondrial DNA mutations and depletion in pediatric medicine. Seminars in Fetal and Neonatal Medicine, 2011, 16, 190-196.	2.3	40
28	EFNS guidelines for the molecular diagnosis of neurogenetic disorders: motoneuron, peripheral nerve and muscle disorders. European Journal of Neurology, 2011, 18, 207-217.	3.3	29
29	EFNS guidelines on the molecular diagnosis of ataxias and spastic paraplegias. European Journal of Neurology, 2010, 17, 179-188.	3.3	49
30	EFNS guidelines on the molecular diagnosis of channelopathies, epilepsies, migraine, stroke, and dementias. European Journal of Neurology, 2010, 17, 641-648.	3.3	10
31	Early-onset liver mtDNA depletion and late-onset proteinuric nephropathy in Mpv 17 knockout mice. Human Molecular Genetics, 2009, 18 , 12 - 26 .	2.9	87
32	Identification of novel mutations in five patients with mitochondrial encephalomyopathy. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 491-501.	1.0	83
33	Clinical and molecular features of mitochondrial DNA depletion syndromes. Journal of Inherited Metabolic Disease, 2009, 32, 143-158.	3.6	161
34	Disorders from perturbations of nuclearâ€mitochondrial intergenomic crossâ€ŧalk. Journal of Internal Medicine, 2009, 265, 174-192.	6.0	64
35	EFNS guidelines on the molecular diagnosis of neurogenetic disorders: general issues, Huntington's disease, Parkinson's disease and dystonias. European Journal of Neurology, 2009, 16, 777-785.	3.3	51
36	EFNS guidelines on the molecular diagnosis of mitochondrial disorders. European Journal of Neurology, 2009, 16, 1255-1264.	3.3	55

3

#	Article	IF	CITATIONS
37	Collated mutations in mitochondrial DNA (mtDNA) depletion syndrome (excluding the mitochondrial) Tj ETQq1 11109-1112.	0.784314 3.8	rgBT /Over 41
38	Glucose metabolism and diet-based prevention of liver dysfunction in MPV17 mutant patients. Journal of Hepatology, 2009, 50, 215-221.	3.7	44
39	Mitochondrial Diseases: A Cross-Talk Between Mitochondrial and Nuclear Genomes. Advances in Experimental Medicine and Biology, 2009, 652, 69-84.	1.6	27
40	Lack of founder effect for an identical mtDNA depletion syndrome (MDS)-associated MPV17 mutation shared by Navajos and Italians. Neuromuscular Disorders, 2008, 18, 315-318.	0.6	17
41	Hepatocerebral Form of Mitochondrial DNA Depletion Syndrome. Archives of Neurology, 2008, 65, 1108-13.	4.5	68
42	Disorders of Nuclear-Mitochondrial Intergenomic Communication. Bioscience Reports, 2007, 27, 39-51.	2.4	61
43	MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nature Genetics, 2006, 38, 570-575.	21.4	380
44	Systematic identification of human mitochondrial disease genes through integrative genomics. Nature Genetics, 2006, 38, 576-582.	21.4	321
45	Disorders of nuclear-mitochondrial intergenomic signaling. Gene, 2005, 354, 162-168.	2.2	108
46	Definitive Diagnosis of Mitochondrial Neurogastrointestinal Encephalomyopathy by Biochemical Assays. Clinical Chemistry, 2004, 50, 120-124.	3.2	107
47	Thymidine Phosphorylase Deficiency Causes MNGIE: An Autosomal Recessive Mitochondrial Disorder. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 1217-1225.	1.1	24
48	Mitochondrial myopathy and ophthalmoplegia in a sporadic patient with the 5698Gâ†'A mitochondrial DNA mutation. Neuromuscular Disorders, 2004, 14, 815-817.	0.6	12
49	Mitochondrial disorders. Current Neurology and Neuroscience Reports, 2003, 3, 423-432.	4.2	79
50	Nuclear genes in mitochondrial disorders. Current Opinion in Genetics and Development, 2003, 13, 262-270.	3.3	82
51	Altered Thymidine Metabolism Due to Defects of Thymidine Phosphorylase. Journal of Biological Chemistry, 2002, 277, 4128-4133.	3.4	209
52	Mitochondrial neurogastrointestinal encephalomyopathy and thymidine metabolism: results and hypotheses. Mitochondrion, 2002, 2, 143-147.	3.4	10
53	MNGIE: from nuclear DNA to mitochondrial DNA. Neuromuscular Disorders, 2001, 11, 7-10.	0.6	64
54	Assay of mitochondrial ATP synthesis in animal cells. Methods in Cell Biology, 2001, 65, 133-145.	1.1	30

#	Article	IF	CITATIONS
55	Coenzyme Q ₁₀ reverses pathological phenotype and reduces apoptosis in familial CoQ ₁₀ deficiency. Neurology, 2001, 57, 515-518.	1.1	157
56	Mitochondrial neurogastrointestinal encephalomyopathy: An autosomal recessive disorder due to thymidine phosphorylase mutations. Annals of Neurology, 2000, 47, 792-800.	5.3	324
57	Mitochondrial neurogastrointestinal encephalomyopathy: an autosomal recessive disorder due to thymidine phosphorylase mutations. Annals of Neurology, 2000, 47, 792-800.	5.3	81
58	A distinctive autosomal dominant vacuolar neuromyopathy linked to 19p13. Neurology, 1999, 53, 830-830.	1.1	36
59	Oligomycin Induces a Decrease in the Cellular Content of a Pathogenic Mutation in the Human Mitochondrial ATPase 6 Gene. Journal of Biological Chemistry, 1999, 274, 9386-9391.	3.4	90
60	Thymidine Phosphorylase Gene Mutations in MNGIE, a Human Mitochondrial Disorder. Science, 1999, 283, 689-692.	12.6	827
61	A Novel Mitochondrial DNA Point Mutation in the tRNAlleGene Is Associated with Progressive External Ophtalmoplegia. Biochemical and Biophysical Research Communications, 1996, 220, 623-627.	2.1	54
62	Morphological observations in mitochondrial diseases. Progress in Cell Research, 1995, , 217-221.	0.3	O