List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9212491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Advances and Challenges of Liposome Assisted Drug Delivery. Frontiers in Pharmacology, 2015, 6, 286.	3.5	1,668
4	Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nature Medicine, 2006, 12, 939-944.	30.7	1,029
5	Ovarian cancer. Nature Reviews Disease Primers, 2016, 2, 16061.	30.5	761
6	Paraneoplastic Thrombocytosis in Ovarian Cancer. New England Journal of Medicine, 2012, 366, 610-618.	27.0	651
7	Therapeutic EphA2 Gene Targeting In vivo Using Neutral Liposomal Small Interfering RNA Delivery. Cancer Research, 2005, 65, 6910-6918.	0.9	632
8	Comprehensive Genomic Characterization of Long Non-coding RNAs across Human Cancers. Cancer Cell, 2015, 28, 529-540.	16.8	601
9	miRNA Deregulation in Cancer Cells and the Tumor Microenvironment. Cancer Discovery, 2016, 6, 235-246.	9.4	554
10	A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. Cancer Cell, 2018, 33, 690-705.e9.	16.8	478
11	Stress Hormone–Mediated Invasion of Ovarian Cancer Cells. Clinical Cancer Research, 2006, 12, 369-375.	7.0	432
12	Sympathetic nervous system regulation of the tumour microenvironment. Nature Reviews Cancer, 2015, 15, 563-572.	28.4	406
13	The Platelet Lifeline to Cancer: Challenges and Opportunities. Cancer Cell, 2018, 33, 965-983.	16.8	390
14	Preclinical and clinical development of siRNA-based therapeutics. Advanced Drug Delivery Reviews, 2015, 87, 108-119.	13.7	382
15	Liposomal siRNA nanocarriers for cancer therapy. Advanced Drug Delivery Reviews, 2014, 66, 110-116.	13.7	364
16	Tumour angiogenesis regulation by the miR-200 family. Nature Communications, 2013, 4, 2427.	12.8	363
17	microRNA Therapeutics in Cancer — An Emerging Concept. EBioMedicine, 2016, 12, 34-42.	6.1	360
18	Regulation of Tumor Angiogenesis by EZH2. Cancer Cell, 2010, 18, 185-197.	16.8	346

#	Article	IF	CITATIONS
19	Integrated Analyses Identify a Master MicroRNA Regulatory Network for the Mesenchymal Subtype in Serous Ovarian Cancer. Cancer Cell, 2013, 23, 186-199.	16.8	340
20	Circular RNAs in Cancer. Molecular Therapy - Nucleic Acids, 2019, 16, 118-129.	5.1	325
21	Exploring and comparing adverse events between PARP inhibitors. Lancet Oncology, The, 2019, 20, e15-e28.	10.7	287
22	Platelets and cancer: a casual or causal relationship: revisited. Cancer and Metastasis Reviews, 2014, 33, 231-269.	5.9	258
23	Hematogenous Metastasis of Ovarian Cancer: Rethinking Mode of Spread. Cancer Cell, 2014, 26, 77-91.	16.8	252
24	Targeted Gene Silencing Using RGD-Labeled Chitosan Nanoparticles. Clinical Cancer Research, 2010, 16, 3910-3922.	7.0	245
25	Social Support, Psychological Distress, and Natural Killer Cell Activity in Ovarian Cancer. Journal of Clinical Oncology, 2005, 23, 7105-7113.	1.6	239
26	Biological Significance of Focal Adhesion Kinase in Ovarian Cancer. American Journal of Pathology, 2004, 165, 1087-1095.	3.8	232
27	Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. Journal of Clinical Investigation, 2010, 120, 1515-1523.	8.2	231
28	exRNA Atlas Analysis Reveals Distinct Extracellular RNA Cargo Types and Their Carriers Present across Human Biofluids. Cell, 2019, 177, 463-477.e15.	28.9	228
29	RNAi Therapies: Drugging the Undruggable. Science Translational Medicine, 2014, 6, 240ps7.	12.4	215
30	Small RNA Sequencing across Diverse Biofluids Identifies Optimal Methods for exRNA Isolation. Cell, 2019, 177, 446-462.e16.	28.9	214
31	Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. Nature Cell Biology, 2015, 17, 311-321.	10.3	205
32	Pan-Cancer Analysis of IncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context. Cell Reports, 2018, 23, 297-312.e12.	6.4	205
33	RNA interference-based therapy and its delivery systems. Cancer and Metastasis Reviews, 2018, 37, 107-124.	5.9	201
34	Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nature Communications, 2014, 5, 5203.	12.8	195
35	TP53 loss creates therapeutic vulnerability inÂcolorectal cancer. Nature, 2015, 520, 697-701.	27.8	192
36	Platelets increase the proliferation of ovarian cancer cells. Blood, 2012, 120, 4869-4872.	1.4	190

#	Article	IF	CITATIONS
37	A Novel Platform for Detection of CK+ and CKâ ^{~,} CTCs. Cancer Discovery, 2011, 1, 580-586.	9.4	189
38	Psychosocial factors and interleukin-6 among women with advanced ovarian cancer. Cancer, 2005, 104, 305-313.	4.1	185
39	Clinical Significance of CTNNB1 Mutation and Wnt Pathway Activation in Endometrioid Endometrial Carcinoma. Journal of the National Cancer Institute, 2014, 106, .	6.3	182
40	Mechanisms of nuclear content loading to exosomes. Science Advances, 2019, 5, eaax8849.	10.3	176
41	Platelets reduce anoikis and promote metastasis by activating YAP1 signaling. Nature Communications, 2017, 8, 310.	12.8	169
42	Integrated Analysis of Genetic Ancestry and Genomic Alterations across Cancers. Cancer Cell, 2018, 34, 549-560.e9.	16.8	168
43	Autocrine Effects of Tumor-Derived Complement. Cell Reports, 2014, 6, 1085-1095.	6.4	164
44	Social isolation is associated with elevated tumor norepinephrine in ovarian carcinoma patients. Brain, Behavior, and Immunity, 2011, 25, 250-255.	4.1	159
45	Exosomal miRNA confers chemo resistance via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancer. EBioMedicine, 2018, 38, 100-112.	6.1	159
46	Clinical impact of selective and nonselective betaâ€blockers on survival in patients with ovarian cancer. Cancer, 2015, 121, 3444-3451.	4.1	157
47	Patterns of metastasis in sex cord-stromal tumors of the ovary: Can routine staging lymphadenectomy be omitted?. Gynecologic Oncology, 2009, 113, 86-90.	1.4	153
48	Hypoxia-mediated downregulation of miRNA biogenesis promotes tumour progression. Nature Communications, 2014, 5, 5202.	12.8	151
49	FABP4 as a key determinant of metastatic potential of ovarian cancer. Nature Communications, 2018, 9, 2923.	12.8	151
50	miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nature Communications, 2014, 5, 5671.	12.8	148
51	Depression, social support, and beta-adrenergic transcription control in human ovarian cancer. Brain, Behavior, and Immunity, 2009, 23, 176-183.	4.1	145
52	Systematic characterization of A-to-I RNA editing hotspots in microRNAs across human cancers. Genome Research, 2017, 27, 1112-1125.	5.5	144
53	Vascular endothelial growth factor and social support in patients with ovarian carcinoma. Cancer, 2002, 95, 808-815.	4.1	143
54	Salt-Inducible Kinase 2 Couples Ovarian Cancer Cell Metabolism with Survival at the Adipocyte-Rich Metastatic Niche. Cancer Cell, 2016, 30, 273-289.	16.8	143

#	Article	IF	CITATIONS
55	Social Influences on Clinical Outcomes of Patients With Ovarian Cancer. Journal of Clinical Oncology, 2012, 30, 2885-2890.	1.6	142
56	Therapeutic Synergy between microRNA and siRNA in Ovarian Cancer Treatment. Cancer Discovery, 2013, 3, 1302-1315.	9.4	140
57	Molecular Pathways: Translational and Therapeutic Implications of the Notch Signaling Pathway in Cancer. Clinical Cancer Research, 2015, 21, 955-961.	7.0	140
58	Biobehavioral Influences on Matrix Metalloproteinase Expression in Ovarian Carcinoma. Clinical Cancer Research, 2008, 14, 6839-6846.	7.0	137
59	Therapeutic Targeting of ATP7B in Ovarian Carcinoma. Clinical Cancer Research, 2009, 15, 3770-3780.	7.0	128
60	RNA-targeted therapeutics in cancer clinical trials: Current status and future directions. Cancer Treatment Reviews, 2016, 50, 35-47.	7.7	128
61	Platelet "first responders―in wound response, cancer, and metastasis. Cancer and Metastasis Reviews, 2017, 36, 199-213.	5.9	127
62	Functional significance of VEGFRâ€⊋ on ovarian cancer cells. International Journal of Cancer, 2009, 124, 1045-1053.	5.1	124
63	The role of long noncoding RNAs in cancer: the dark matter matters. Current Opinion in Genetics and Development, 2018, 48, 8-15.	3.3	122
64	A framework for a personalized surgical approach to ovarian cancer. Nature Reviews Clinical Oncology, 2015, 12, 239-245.	27.6	118
65	Yesâ€associated protein 1 and transcriptional coactivator with PDZâ€binding motif activate the mammalian target of rapamycin complex 1 pathway by regulating amino acid transporters in hepatocellular carcinoma. Hepatology, 2016, 63, 159-172.	7.3	115
66	BET Inhibitors Suppress ALDH Activity by Targeting <i>ALDH1A1</i> Super-Enhancer in Ovarian Cancer. Cancer Research, 2016, 76, 6320-6330.	0.9	115
67	Calcium-dependent FAK/CREB/TNNC1 signalling mediates the effect of stromal MFAP5 on ovarian cancer metastatic potential. Nature Communications, 2014, 5, 5092.	12.8	112
68	Metabolic Markers and Statistical Prediction of Serous Ovarian Cancer Aggressiveness by Ambient Ionization Mass Spectrometry Imaging. Cancer Research, 2017, 77, 2903-2913.	0.9	106
69	Long Noncoding RNA Ceruloplasmin Promotes Cancer Growth by Altering Glycolysis. Cell Reports, 2015, 13, 2395-2402.	6.4	105
70	Cancer-associated fibroblasts regulate endothelial adhesion protein LPP to promote ovarian cancer chemoresistance. Journal of Clinical Investigation, 2017, 128, 589-606.	8.2	105
71	CD44-Targeting PLGA Nanoparticles Incorporating Paclitaxel and FAK siRNA Overcome Chemoresistance in Epithelial Ovarian Cancer. Cancer Research, 2018, 78, 6247-6256.	0.9	104
72	2′-OMe-phosphorodithioate-modified siRNAs show increased loading into the RISC complex and enhanced anti-tumour activity. Nature Communications, 2014, 5, 3459.	12.8	103

#	Article	IF	CITATIONS
73	Augmentation of Response to Chemotherapy by microRNA-506 Through Regulation of RAD51 in Serous Ovarian Cancers. Journal of the National Cancer Institute, 2015, 107, .	6.3	102
74	Ferroptosis as a mechanism to mediate p53 function in tumor radiosensitivity. Oncogene, 2021, 40, 3533-3547.	5.9	101
75	FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. Journal of Clinical Investigation, 2016, 126, 1885-1896.	8.2	101
76	Targeting c-MYC in Platinum-Resistant Ovarian Cancer. Molecular Cancer Therapeutics, 2015, 14, 2260-2269.	4.1	100
77	A miR-192-EGR1-HOXB9 regulatory network controls the angiogenic switch in cancer. Nature Communications, 2016, 7, 11169.	12.8	100
78	Functional role of matrix metalloproteinases in ovarian tumor cell plasticity. American Journal of Obstetrics and Gynecology, 2004, 190, 899-909.	1.3	96
79	Stress hormones promote EGFR inhibitor resistance in NSCLC: Implications for combinations with ^{[2} -blockers. Science Translational Medicine, 2017, 9, .	12.4	96
80	Erythropoietin Stimulates Tumor Growth via EphB4. Cancer Cell, 2015, 28, 610-622.	16.8	94
81	Evoking picomolar binding in RNA by a single phosphorodithioate linkage. Nucleic Acids Research, 2016, 44, 8052-8064.	14.5	94
82	Preclinical Mammalian Safety Studies of EPHARNA (DOPC Nanoliposomal EphA2-Targeted siRNA). Molecular Cancer Therapeutics, 2017, 16, 1114-1123.	4.1	94
83	The Clinical Significance of Tumor Cell-Lined Vasculature in Ovarian Carcinoma: Implications for Anti-Vasculogenic Therapy. Cancer Biology and Therapy, 2002, 1, 661-664.	3.4	89
84	MYC Targeted Long Noncoding RNA DANCR Promotes Cancer in Part by Reducing p21 Levels. Cancer Research, 2018, 78, 64-74.	0.9	87
85	The RNA-Binding Protein DDX1 Promotes Primary MicroRNA Maturation and Inhibits Ovarian Tumor Progression. Cell Reports, 2014, 8, 1447-1460.	6.4	86
86	Targeting the tumour microenvironment in ovarian cancer. European Journal of Cancer, 2016, 56, 131-143.	2.8	84
87	Anti-angiogenesis therapy with bevacizumab for patients with ovarian granulosa cell tumors. Gynecologic Oncology, 2009, 114, 431-436.	1.4	82
88	GATA3 as a master regulator for interactions of tumor-associated macrophages with high-grade serous ovarian carcinoma. Cellular Signalling, 2020, 68, 109539.	3.6	81
89	Molecular Biomarkers of Residual Disease after Surgical Debulking of High-Grade Serous Ovarian Cancer. Clinical Cancer Research, 2014, 20, 3280-3288.	7.0	80
90	EphA2 Immunoconjugate as Molecularly Targeted Chemotherapy for Ovarian Carcinoma. Journal of the National Cancer Institute, 2009, 101, 1193-1205.	6.3	78

#	Article	IF	CITATIONS
91	Differentiation therapy for hepatocellular carcinoma: Multifaceted effects of miRâ€148a on tumor growth and phenotype and liver fibrosis. Hepatology, 2016, 63, 864-879.	7.3	78
92	Adrenergic regulation of monocyte chemotactic protein 1 leads to enhanced macrophage recruitment and ovarian carcinoma growth. Oncotarget, 2015, 6, 4266-4273.	1.8	78
93	Therapeutic Silencing of KRAS Using Systemically Delivered siRNAs. Molecular Cancer Therapeutics, 2014, 13, 2876-2885.	4.1	77
94	Performance of the MasSpec Pen for Rapid Diagnosis of Ovarian Cancer. Clinical Chemistry, 2019, 65, 674-683.	3.2	77
95	Antivascular Therapy for Orthotopic Human Ovarian Carcinoma through Blockade of the Vascular Endothelial Growth Factor and Epidermal Growth Factor Receptors. Clinical Cancer Research, 2005, 11, 4923-4933.	7.0	76
96	miR-101 suppresses the epithelial-to-mesenchymal transition by targeting ZEB1 and ZEB2 in ovarian carcinoma. Oncology Reports, 2014, 31, 2021-2028.	2.6	75
97	Direct Upregulation of STAT3 by MicroRNA-551b-3p Deregulates Growth and Metastasis of Ovarian Cancer. Cell Reports, 2016, 15, 1493-1504.	6.4	75
98	PRKCI promotes immune suppression in ovarian cancer. Genes and Development, 2017, 31, 1109-1121.	5.9	75
99	Nanotechnology: Future of Oncotherapy. Clinical Cancer Research, 2015, 21, 3121-3130.	7.0	74
100	Low-grade serous ovarian cancer: State of the science. Gynecologic Oncology, 2020, 156, 715-725.	1.4	74
101	Characteristics of 10-year survivors of high-grade serous ovarian carcinoma. Gynecologic Oncology, 2016, 141, 260-263.	1.4	73
102	Immune cell profiling in cancer: molecular approaches to cell-specific identification. Npj Precision Oncology, 2017, 1, 26.	5.4	73
103	Differential Platelet Levels Affect Response to Taxane-Based Therapy in Ovarian Cancer. Clinical Cancer Research, 2015, 21, 602-610.	7.0	72
104	Macrophages Facilitate Resistance to Anti-VEGF Therapy by Altered VEGFR Expression. Clinical Cancer Research, 2017, 23, 7034-7046.	7.0	71
105	Bone protection by inhibition of microRNA-182. Nature Communications, 2018, 9, 4108.	12.8	71
106	Ovarian cancer cell-derived lysophosphatidic acid induces glycolytic shift and cancer-associated fibroblast-phenotype in normal and peritumoral fibroblasts. Cancer Letters, 2019, 442, 464-474.	7.2	70
107	Predictors of optimal cytoreduction in patients with newly diagnosed advanced-stage epithelial ovarian cancer: Time to incorporate laparoscopic assessment into the standard of care. Gynecologic Oncology, 2015, 137, 553-558.	1.4	69
108	Adrenergic Stimulation of DUSP1 Impairs Chemotherapy Response in Ovarian Cancer. Clinical Cancer Research, 2016, 22, 1713-1724.	7.0	69

#	Article	IF	CITATIONS
109	Sustained Adrenergic Signaling Promotes Intratumoral Innervation through BDNF Induction. Cancer Research, 2018, 78, 3233-3242.	0.9	69
110	Molecular Analysis of Clinically Defined Subsets of High-Grade Serous Ovarian Cancer. Cell Reports, 2020, 31, 107502.	6.4	69
111	Chromosomal Instability in Tumor Initiation and Development. Cancer Research, 2019, 79, 3995-4002.	0.9	67
112	Complement Component 3 Is Regulated by TWIST1 and Mediates Epithelial–Mesenchymal Transition. Journal of Immunology, 2016, 196, 1412-1418.	0.8	66
113	Copper-64 Labeled PEGylated Exosomes for In Vivo Positron Emission Tomography and Enhanced Tumor Retention. Bioconjugate Chemistry, 2019, 30, 2675-2683.	3.6	66
114	Placenta-derived extracellular vesicles induce preeclampsia in mouse models. Haematologica, 2020, 105, 1686-1694.	3.5	65
115	Evaluation of rucaparib and companion diagnostics in the PARP inhibitor landscape for recurrent ovarian cancer therapy. Future Oncology, 2016, 12, 1439-1456.	2.4	63
116	Calcium-mediated oxidative stress: a common mechanism in tight junction disruption by different types of cellular stress. Biochemical Journal, 2017, 474, 731-749.	3.7	63
117	Definition of PKC-α, CDK6, and MET as Therapeutic Targets in Triple-Negative Breast Cancer. Cancer Research, 2014, 74, 4822-4835.	0.9	61
118	Electron cryotomography reveals ultrastructure alterations in platelets from patients with ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14266-14271.	7.1	61
119	A-to-I miR-378a-3p editing can prevent melanoma progression via regulation of PARVA expression. Nature Communications, 2018, 9, 461.	12.8	61
120	LPA Induces Metabolic Reprogramming in Ovarian Cancer via a Pseudohypoxic Response. Cancer Research, 2018, 78, 1923-1934.	0.9	61
121	Perioperative inhibition of Î ² -adrenergic and COX2 signaling in a clinical trial in breast cancer patients improves tumor Ki-67 expression, serum cytokine levels, and PBMCs transcriptome. Brain, Behavior, and Immunity, 2018, 73, 294-309.	4.1	61
122	Therapeutic evaluation of microRNA-15a and microRNA-16 in ovarian cancer. Oncotarget, 2016, 7, 15093-15104.	1.8	61
123	Rac1/Pak1/p38/MMP-2 Axis Regulates Angiogenesis in Ovarian Cancer. Clinical Cancer Research, 2015, 21, 2127-2137.	7.0	60
124	RNA nanoparticles harboring annexin A2 aptamer can target ovarian cancer for tumor-specific doxorubicin delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1183-1193.	3.3	60
125	Clinically translatable quantitative molecular photoacoustic imaging with liposome-encapsulated ICG J-aggregates. Nature Communications, 2021, 12, 5410.	12.8	60
126	Notch3 Pathway Alterations in Ovarian Cancer. Cancer Research, 2014, 74, 3282-3293.	0.9	59

#	Article	IF	CITATIONS
127	Selective delivery of PLXDC1 small interfering RNA to endothelial cells for anti-angiogenesis tumor therapy using CD44-targeted chitosan nanoparticles for epithelial ovarian cancer. Drug Delivery, 2018, 25, 1394-1402.	5.7	57
128	Therapeutic Targeting of AXL Receptor Tyrosine Kinase Inhibits Tumor Growth and Intraperitoneal Metastasis in Ovarian Cancer Models. Molecular Therapy - Nucleic Acids, 2017, 9, 251-262.	5.1	56
129	Uterine carcinosarcoma: Contemporary clinical summary, molecular updates, and future research opportunity. Gynecologic Oncology, 2021, 160, 586-601.	1.4	56
130	In vivo stepwise immunomodulation using chitosan nanoparticles as a platform nanotechnology for cancer immunotherapy. Scientific Reports, 2016, 6, 38348.	3.3	55
131	miRNA551b-3p Activates an Oncostatin Signaling Module for the Progression of Triple-Negative Breast Cancer. Cell Reports, 2019, 29, 4389-4406.e10.	6.4	55
132	Dual targeting of EphA2 and FAK in ovarian carcinoma. Cancer Biology and Therapy, 2009, 8, 1027-1034.	3.4	54
133	Estrogen receptor expression and increased risk of lymphovascular space invasion in high-grade serous ovarian carcinoma. Gynecologic Oncology, 2014, 133, 473-479.	1.4	53
134	<scp>STAMP</scp> 2 increases oxidative stress and is critical forÂprostate cancer. EMBO Molecular Medicine, 2015, 7, 315-331.	6.9	52
135	Role of Increased n-acetylaspartate Levels in Cancer. Journal of the National Cancer Institute, 2016, 108, djv426.	6.3	51
136	Role of Platelet-Derived Tgfl̂²1 in the Progression of Ovarian Cancer. Clinical Cancer Research, 2017, 23, 5611-5621.	7.0	51
137	Overexpression of enhancer of zeste homolog 2 (EZH2) and focal adhesion kinase (FAK) in high grade endometrial carcinoma. Gynecologic Oncology, 2013, 128, 344-348.	1.4	50
138	Depression and risk of epithelial ovarian cancer: Results from two large prospective cohort studies. Gynecologic Oncology, 2015, 139, 481-486.	1.4	50
139	Stress, inflammation, and eicosanoids: an emerging perspective. Cancer and Metastasis Reviews, 2018, 37, 203-211.	5.9	50
140	miR-509-3p is clinically significant and strongly attenuates cellular migration and multi-cellular spheroids in ovarian cancer. Oncotarget, 2016, 7, 25930-25948.	1.8	49
141	Macrophage depletion through colony stimulating factor 1 receptor pathway blockade overcomes adaptive resistance to anti-VEGF therapy. Oncotarget, 2017, 8, 96496-96505.	1.8	49
142	Platelet Effects on Ovarian Cancer. Seminars in Oncology, 2014, 41, 378-384.	2.2	48
143	Immunotherapy Targeting Folate Receptor Induces Cell Death Associated with Autophagy in Ovarian Cancer. Clinical Cancer Research, 2015, 21, 448-459.	7.0	48
144	Pan-cancer genomic analysis links 3'UTR DNA methylation with increased gene expression in T cells. EBioMedicine, 2019, 43, 127-137.	6.1	48

#	Article	IF	CITATIONS
145	<i>HSP70</i> Inhibition Synergistically Enhances the Effects of Magnetic Fluid Hyperthermia in Ovarian Cancer. Molecular Cancer Therapeutics, 2017, 16, 966-976.	4.1	47
146	The role of tumor microenvironment in resistance to anti-angiogenic therapy. F1000Research, 2018, 7, 326.	1.6	47
147	TFEB ameliorates the impairment of the autophagy-lysosome pathway in neurons induced by doxorubicin. Aging, 2016, 8, 3507-3519.	3.1	47
148	Copy Number Gain of hsa-miR-569 at 3q26.2 Leads to Loss of TP53INP1 and Aggressiveness of Epithelial Cancers. Cancer Cell, 2014, 26, 863-879.	16.8	46
149	Activation of YAP1 is associated with poor prognosis and response to taxanes in ovarian cancer. Anticancer Research, 2014, 34, 811-817.	1.1	46
150	Perioperative beta-blocker use and survival in lung cancer patients. Journal of Clinical Anesthesia, 2014, 26, 106-117.	1.6	45
151	Venous thromboembolism, interleukin-6 and survival outcomes in patients with advanced ovarian clear cell carcinoma. European Journal of Cancer, 2015, 51, 1978-1988.	2.8	44
152	Tuning microtubule dynamics to enhance cancer therapy by modulating FER-mediated CRMP2 phosphorylation. Nature Communications, 2018, 9, 476.	12.8	44
153	Prospective Validation of an Ex Vivo, Patient-Derived 3D Spheroid Model for Response Predictions in Newly Diagnosed Ovarian Cancer. Scientific Reports, 2019, 9, 11153.	3.3	44
154	Antagonism of Tumoral Prolactin Receptor Promotes Autophagy-Related Cell Death. Cell Reports, 2014, 7, 488-500.	6.4	43
155	Human tumor microenvironment chip evaluates the consequences of platelet extravasation and combinatorial antitumor-antiplatelet therapy in ovarian cancer. Science Advances, 2021, 7, .	10.3	43
156	Focal adhesion kinase. Cancer Biology and Therapy, 2014, 15, 919-929.	3.4	42
157	ZRANB1 Is an EZH2 Deubiquitinase and a Potential Therapeutic Target in Breast Cancer. Cell Reports, 2018, 23, 823-837.	6.4	42
158	HN1L Promotes Triple-Negative Breast Cancer Stem Cells through LEPR-STAT3 Pathway. Stem Cell Reports, 2018, 10, 212-227.	4.8	42
159	Dll4 Inhibition plus Aflibercept Markedly Reduces Ovarian Tumor Growth. Molecular Cancer Therapeutics, 2016, 15, 1344-1352.	4.1	41
160	Characterization of and isolation methods for plant leaf nanovesicles and small extracellular vesicles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102271.	3.3	41
161	Identifying and targeting angiogenesis-related microRNAs in ovarian cancer. Oncogene, 2019, 38, 6095-6108.	5.9	40
162	Diurnal cortisol rhythms, fatigue and psychosocial factors in five-year survivors of ovarian cancer. Psychoneuroendocrinology, 2017, 84, 139-142.	2.7	39

#	Article	IF	CITATIONS
163	Defining Survivorship Trajectories Across Patients With Solid Tumors. JAMA Oncology, 2018, 4, 1519.	7.1	38
164	XPO1/CRM1 Inhibition Causes Antitumor Effects by Mitochondrial Accumulation of eIF5A. Clinical Cancer Research, 2015, 21, 3286-3297.	7.0	37
165	Antitumor and Antiangiogenic Effects of Aspirin-PC in Ovarian Cancer. Molecular Cancer Therapeutics, 2016, 15, 2894-2904.	4.1	37
166	Minimally Invasive Surgery and Risk of Capsule Rupture for Women With Early-Stage Ovarian Cancer. JAMA Oncology, 2020, 6, 1110.	7.1	37
167	PTGER3 induces ovary tumorigenesis and confers resistance to cisplatin therapy through up-regulation Ras-MAPK/Erk-ETS1-ELK1/CFTR1 axis. EBioMedicine, 2019, 40, 290-304.	6.1	36
168	Significance of monocyte counts on tumor characteristics and survival outcome of women with endometrial cancer. Gynecologic Oncology, 2015, 138, 332-338.	1.4	35
169	Toll-like receptor 3-induced immune response by poly(D,L-lactide-co-glycolide) nanoparticles for dendritic cell-based cancer immunotherapy. International Journal of Nanomedicine, 2016, Volume 11, 5729-5742.	6.7	35
170	Peroxisomes contribute to oxidative stress in neurons during doxorubicin-based chemotherapy. Molecular and Cellular Neurosciences, 2018, 86, 65-71.	2.2	35
171	Clodronate inhibits tumor angiogenesis in mouse models of ovarian cancer. Cancer Biology and Therapy, 2014, 15, 1061-1067.	3.4	34
172	Aspirin use and endometrial cancer risk and survival. Gynecologic Oncology, 2018, 148, 222-232.	1.4	34
173	Coevolution of neoplastic epithelial cells and multilineage stroma via polyploid giant cells during immortalization and transformation of mullerian epithelial cells. Genes and Cancer, 2016, 7, 60-72.	1.9	34
174	RNA-binding protein FXR1 drives cMYC translation by recruiting eIF4F complex to the translation start site. Cell Reports, 2021, 37, 109934.	6.4	34
175	State of the science: Emerging therapeutic strategies for targeting angiogenesis in ovarian cancer. Gynecologic Oncology, 2015, 138, 223-226.	1.4	33
176	Copy number deletion of RAD50 as predictive marker of BRCAness and PARP inhibitor response in BRCA wild type ovarian cancer. Gynecologic Oncology, 2016, 141, 57-64.	1.4	33
177	Highly heterogeneous genomic landscape of uterine leiomyomas byÂwhole exome sequencing and genome-wide arrays. Fertility and Sterility, 2017, 107, 457-466.e9.	1.0	33
178	OvCa-Chip microsystem recreates vascular endothelium–mediated platelet extravasation in ovarian cancer. Blood Advances, 2020, 4, 3329-3342.	5.2	33
179	BRCA2 inhibition enhances cisplatinâ€mediated alterations in tumor cell proliferation, metabolism, and metastasis. Molecular Oncology, 2014, 8, 1429-1440	4.6	32
180	Association of Somatic Mutations of <i>ADAMTS</i> Genes With Chemotherapy Sensitivity and Survival in High-Grade Serous Ovarian Carcinoma. JAMA Oncology, 2015, 1, 486.	7.1	32

#	Article	IF	CITATIONS
181	ΔNp63/DGCR8-Dependent MicroRNAs Mediate Therapeutic Efficacy of HDAC Inhibitors in Cancer. Cancer Cell, 2016, 29, 874-888.	16.8	32
182	Quality of life among long-term survivors of advanced stage ovarian cancer: A cross-sectional approach. Gynecologic Oncology, 2017, 146, 101-108.	1.4	32
183	Differential Effects of EGFL6 on Tumor versus Wound Angiogenesis. Cell Reports, 2017, 21, 2785-2795.	6.4	32
184	Metronomic Docetaxel in PRINT Nanoparticles and EZH2 Silencing Have Synergistic Antitumor Effect in Ovarian Cancer. Molecular Cancer Therapeutics, 2014, 13, 1750-1757.	4.1	31
185	Geometrical confinement of Gd(DOTA) molecules within mesoporous silicon nanoconstructs for MR imaging of cancer. Cancer Letters, 2014, 352, 97-101.	7.2	31
186	Platelet-derived growth factor receptor alpha (PDGFRα) targeting and relevant biomarkers in ovarian carcinoma. Gynecologic Oncology, 2014, 132, 166-175.	1.4	31
187	Rationale for combination PARP inhibitor and antiangiogenic treatment in advanced epithelial ovarian cancer: A review. Gynecologic Oncology, 2021, 162, 482-495.	1.4	31
188	Phase Ib Dose Expansion and Translational Analyses of Olaparib in Combination with Capivasertib in Recurrent Endometrial, Triple-Negative Breast, and Ovarian Cancer. Clinical Cancer Research, 2021, 27, 6354-6365.	7.0	31
189	IL-6 promotes drug resistance through formation of polyploid giant cancer cells and stromal fibroblast reprogramming. Oncogenesis, 2021, 10, 65.	4.9	30
190	Kallikrein family proteases KLK6 and KLK7 are potential early detection and diagnostic biomarkers for serous and papillary serous ovarian cancer subtypes. Journal of Ovarian Research, 2014, 7, 109.	3.0	29
191	Trends of low-grade serous ovarian carcinoma in the United States. Journal of Gynecologic Oncology, 2018, 29, e15.	2.2	29
192	The role of neoadjuvant chemotherapy in the management of low-grade serous carcinoma of the ovary and peritoneum: Further evidence of relative chemoresistance. Gynecologic Oncology, 2020, 158, 653-658.	1.4	29
193	Targeting progesterone signaling prevents metastatic ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31993-32004.	7.1	29
194	CDK5 Regulates Paclitaxel Sensitivity in Ovarian Cancer Cells by Modulating AKT Activation, p21Cip1- and p27Kip1-Mediated G1 Cell Cycle Arrest and Apoptosis. PLoS ONE, 2015, 10, e0131833.	2.5	28
195	Stress Influences on Anoikis. Cancer Prevention Research, 2011, 4, 481-485.	1.5	27
196	Thrombosis in Cancer: Research Priorities Identified by a National Cancer Institute/National Heart, Lung, and Blood Institute Strategic Working Group. Cancer Research, 2016, 76, 3671-3675.	0.9	27
197	Linalool-Incorporated Nanoparticles as a Novel Anticancer Agent for Epithelial Ovarian Carcinoma. Molecular Cancer Therapeutics, 2016, 15, 618-627.	4.1	27
198	Role of hysterectomy and lymphadenectomy in the management of early-stage borderline ovarian tumors. Gynecologic Oncology, 2017, 144, 496-502.	1.4	27

#	Article	IF	CITATIONS
199	Endothelial cell malignancies: new insights from the laboratory and clinic. Npj Precision Oncology, 2017, 1, 11.	5.4	27
200	Biobehavioral modulation of the exosome transcriptome in ovarian carcinoma. Cancer, 2018, 124, 580-586.	4.1	27
201	EGFL6 promotes breast cancer by simultaneously enhancing cancer cell metastasis and stimulating tumor angiogenesis. Oncogene, 2019, 38, 2123-2134.	5.9	27
202	Gain-of-function p53 protein transferred via small extracellular vesicles promotes conversion of fibroblasts to a cancer-associated phenotype. Cell Reports, 2021, 34, 108726.	6.4	27
203	Lipid profile of platelets and platelet-derived microparticles in ovarian cancer. BBA Clinical, 2016, 6, 76-81.	4.1	26
204	Predictors of survival trajectories among women with epithelial ovarian cancer. Gynecologic Oncology, 2020, 156, 459-466.	1.4	26
205	Emerging Trends in Neoadjuvant Chemotherapy for Ovarian Cancer. Cancers, 2021, 13, 626.	3.7	26
206	Pan ancer clinical and molecular analysis of racial disparities. Cancer, 2020, 126, 800-807.	4.1	25
207	Demcizumab combined with paclitaxel for platinum-resistant ovarian, primary peritoneal, and fallopian tube cancer: The SIERRA open-label phase Ib trial. Gynecologic Oncology, 2020, 157, 386-391.	1.4	25
208	Bisphosphonates Inhibit Stellate Cell Activity and Enhance Antitumor Effects of Nanoparticle Albumin–Bound Paclitaxel in Pancreatic Ductal Adenocarcinoma. Molecular Cancer Therapeutics, 2014, 13, 2583-2594.	4.1	24
209	Hypertension, use of antihypertensive medications, and risk of epithelial ovarian cancer. International Journal of Cancer, 2016, 139, 291-299.	5.1	24
210	Developing hyperpolarized silicon particles for <i>in vivo</i> MRI targeting of ovarian cancer. Journal of Medical Imaging, 2016, 3, 036001.	1.5	24
211	Prospective pilot trial with combination of propranolol with chemotherapy in patients with epithelial ovarian cancer and evaluation on circulating immune cell gene expression. Gynecologic Oncology, 2019, 154, 524-530.	1.4	24
212	Molecular Pathways and Targeted Therapies for Malignant Ovarian Germ Cell Tumors and Sex Cord–Stromal Tumors: A Contemporary Review. Cancers, 2020, 12, 1398.	3.7	24
213	ADH1B promotes mesothelial clearance and ovarian cancer infiltration. Oncotarget, 2018, 9, 25115-25126.	1.8	24
214	Rucaparib in ovarian cancer: an update on safety, efficacy and place in therapy. Therapeutic Advances in Medical Oncology, 2018, 10, 175883591877848.	3.2	23
215	Life stress as a risk factor for sustained anxiety and cortisol dysregulation during the first year of survivorship in ovarian cancer. Cancer, 2018, 124, 3401-3408.	4.1	23
216	<i>PRKRA</i> /PACT Expression Promotes Chemoresistance of Mucinous Ovarian Cancer. Molecular Cancer Therapeutics, 2019, 18, 162-172.	4.1	23

#	Article	IF	CITATIONS
217	Podoplanin promotes tumor growth, platelet aggregation, and venous thrombosis in murine models of ovarian cancer. Journal of Thrombosis and Haemostasis, 2022, 20, 104-114.	3.8	23
218	The life cycle of polyploid giant cancer cells and dormancy in cancer: Opportunities for novel therapeutic interventions. Seminars in Cancer Biology, 2022, 81, 132-144.	9.6	23
219	Spatially resolved transcriptomics of high-grade serous ovarian carcinoma. IScience, 2022, 25, 103923.	4.1	23
220	Association of Ovarian Tumor β2-Adrenergic Receptor Status with Ovarian Cancer Risk Factors and Survival. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1587-1594.	2.5	22
221	6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase-2 Regulates TP53-Dependent Paclitaxel Sensitivity in Ovarian and Breast Cancers. Clinical Cancer Research, 2019, 25, 5702-5716.	7.0	22
222	Long non-coding RNAs in ovarian cancer: expression profile and functional spectrum. RNA Biology, 2020, 17, 1523-1534.	3.1	22
223	Sequential Intraperitoneal Topotecan and Oral Etoposide Chemotherapy in Recurrent Platinum-Resistant Ovarian Carcinoma. Clinical Cancer Research, 2004, 10, 6080-6085.	7.0	21
224	Role of CTGF in Sensitivity to Hyperthermia in Ovarian and Uterine Cancers. Cell Reports, 2016, 17, 1621-1631.	6.4	21
225	Clinical and biological significance of EZH2 expression in endometrial cancer. Cancer Biology and Therapy, 2020, 21, 147-156.	3.4	21
226	Induction of antitumor immunity in mice by the combination of nanoparticle-based photothermolysis and anti-PD-1 checkpoint inhibition. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 25, 102169.	3.3	21
227	Clinical significance of homologous recombination deficiency score testing in endometrial Cancer. Gynecologic Oncology, 2021, 160, 777-785.	1.4	21
228	CD8+ T cells inhibit metastasis and CXCL4 regulates its function. British Journal of Cancer, 2021, 125, 176-189.	6.4	21
229	<i>PTEN</i> Expression as a Predictor of Response to Focal Adhesion Kinase Inhibition in Uterine Cancer. Molecular Cancer Therapeutics, 2015, 14, 1466-1475.	4.1	20
230	Pelvic fractures and changes in bone mineral density after radiotherapy for cervical, endometrial, and vaginal cancer: A prospective study of 239 women. Cancer, 2020, 126, 2607-2613.	4.1	20
231	Possible candidate population for neoadjuvant chemotherapy in women with advanced ovarian cancer. Gynecologic Oncology, 2021, 160, 32-39.	1.4	20
232	Extensive three-dimensional intratumor proteomic heterogeneity revealed by multiregion sampling in high-grade serous ovarian tumor specimens. IScience, 2021, 24, 102757.	4.1	20
233	CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance. Cell Reports, 2021, 36, 109549.	6.4	20
234	Novel Modification of the Vertical Rectus Abdominis Myocutaneous Flap for Neovagina Creation. Obstetrics and Gynecology, 2005, 105, 514-518.	2.4	19

#	Article	IF	CITATIONS
235	Concordance of a laparoscopic scoring algorithm with primary surgery findings in advanced stage ovarian cancer. Gynecologic Oncology, 2018, 151, 428-432.	1.4	19
236	Adaptive responses in a PARP inhibitor window of opportunity trial illustrate limited functional interlesional heterogeneity and potential combination therapy options. Oncotarget, 2019, 10, 3533-3546.	1.8	19
237	Quaking orchestrates a post-transcriptional regulatory network of endothelial cell cycle progression critical to angiogenesis and metastasis. Oncogene, 2019, 38, 5191-5210.	5.9	19
238	The rise of genomic profiling in ovarian cancer. Expert Review of Molecular Diagnostics, 2016, 16, 1337-1351.	3.1	18
239	Precision Nanomedicine Using Dual PET and MR Temperature Imaging–Guided Photothermal Therapy. Journal of Nuclear Medicine, 2016, 57, 1778-1783.	5.0	18
240	DNA methylation signatures and coagulation factors in the peripheral blood leucocytes of epithelial ovarian cancer. Carcinogenesis, 2017, 38, 797-805.	2.8	18
241	A small amount of cyclooxygenase 2 (COX2) is constitutively expressed in platelets. Platelets, 2017, 28, 99-102.	2.3	18
242	Perineural invasion (PNI) in vulvar carcinoma: A review of 421 cases. Gynecologic Oncology, 2019, 152, 101-105.	1.4	18
243	Survival outcome of stage I ovarian clear cell carcinoma with lympho-vascular space invasion. Gynecologic Oncology, 2015, 136, 198-204.	1.4	17
244	MIIP remodels Rac1-mediated cytoskeleton structure in suppression of endometrial cancer metastasis. Journal of Hematology and Oncology, 2016, 9, 112.	17.0	17
245	Phase II trial of bevacizumab with dose-dense paclitaxel as first-line treatment in patients with advanced ovarian cancer. Gynecologic Oncology, 2017, 147, 41-46.	1.4	17
246	Ionizing Radiation Induces Endothelial Inflammation and Apoptosis via p90RSK-Mediated ERK5 S496 Phosphorylation. Frontiers in Cardiovascular Medicine, 2018, 5, 23.	2.4	17
247	The hidden role of paxillin: localization to nucleus promotes tumor angiogenesis. Oncogene, 2021, 40, 384-395.	5.9	17
248	Mucinous borderline ovarian tumor versus invasive well-differentiated mucinous ovarian cancer: Difference in characteristics and outcomes. Gynecologic Oncology, 2019, 153, 230-237.	1.4	16
249	Pharmacogenomic analysis of patient-derived tumor cells in gynecologic cancers. Genome Biology, 2019, 20, 253.	8.8	16
250	Rural residence is related to shorter survival in epithelial ovarian cancer patients. Gynecologic Oncology, 2021, 163, 22-28.	1.4	16
251	Eudaimonic wellâ€being and tumor norepinephrine in patients with epithelial ovarian cancer. Cancer, 2015, 121, 3543-3550.	4.1	15
252	Prediction of anti-angiogenesis escape. Gynecologic Oncology, 2016, 141, 80-85.	1.4	15

#	Article	IF	CITATIONS
253	Activating p53 family member TAp63: A novel therapeutic strategy for targeting p53â€altered tumors. Cancer, 2019, 125, 2409-2422.	4.1	15
254	Epithelialâ€mesenchymal transition polarization in ovarian carcinomas from patients with high social isolation. Cancer, 2020, 126, 4407-4413.	4.1	15
255	p53 Null Mutations are Associated with a Telomerase Negative Phenotype in Ovarian Carcinoma. Cancer Biology and Therapy, 2002, 1, 511-517.	3.4	14
256	Biologic Effects of Platelet-Derived Growth Factor Receptor α Blockade in Uterine Cancer. Clinical Cancer Research, 2014, 20, 2740-2750.	7.0	14
257	Platelets are not hyperreactive in patients with ovarian cancer. Platelets, 2016, 27, 716-718.	2.3	14
258	Immunological and pleiotropic effects of individual β-blockers and their relevance in cancer therapies. Expert Opinion on Investigational Drugs, 2016, 25, 501-505.	4.1	14
259	Bioactive lipid metabolism in platelet "first responder―and cancer biology. Cancer and Metastasis Reviews, 2018, 37, 439-454.	5.9	14
260	Oxytocin in the tumor microenvironment is associated with lower inflammation and longer survival in advanced epithelial ovarian cancer patients. Psychoneuroendocrinology, 2019, 106, 244-251.	2.7	14
261	Oncolytic HSV Therapy Modulates Vesicular Trafficking Inducing Cisplatin Sensitivity and Antitumor Immunity. Clinical Cancer Research, 2021, 27, 542-553.	7.0	14
262	Combined VEGFR and MAPK pathway inhibition in angiosarcoma. Scientific Reports, 2021, 11, 9362.	3.3	14
263	<i><scp>MIIP</scp></i> haploinsufficiency induces chromosomal instability and promotes tumour progression in colorectal cancer. Journal of Pathology, 2017, 241, 67-79.	4.5	13
264	Evolving population-based statistics for rare epithelial ovarian cancers. Gynecologic Oncology, 2020, 157, 3-11.	1.4	13
265	PRKAR1B-AS2 Long Noncoding RNA Promotes Tumorigenesis, Survival, and Chemoresistance via the PI3K/AKT/mTOR Pathway. International Journal of Molecular Sciences, 2021, 22, 1882.	4.1	13
266	Mitochondria in epithelial ovarian carcinoma exhibit abnormal phenotypes and blunted associations with biobehavioral factors. Scientific Reports, 2021, 11, 11595.	3.3	13
267	Expression of B7–H4 and IDO1 is associated with drug resistance and poor prognosis in high-grade serous ovarian carcinomas. Human Pathology, 2021, 113, 20-27.	2.0	13
268	Targeting the centriolar replication factor STIL synergizes with DNA damaging agents for treatment of ovarian cancer. Oncotarget, 2017, 8, 27380-27392.	1.8	13
269	GnRH-R–Targeted Lytic Peptide Sensitizes <i>BRCA</i> Wild-type Ovarian Cancer to PARP Inhibition. Molecular Cancer Therapeutics, 2019, 18, 969-979	4.1	12
270	Tumor core biopsies adequately represent immune microenvironment of high-grade serous carcinoma. Scientific Reports, 2019, 9, 17589.	3.3	12

#	Article	IF	CITATIONS
271	Minimally invasive surgery for early-stage ovarian cancer: Association between hospital surgical volume and short-term perioperative outcomes. Gynecologic Oncology, 2020, 158, 59-65.	1.4	12
272	Platelets Increase the Expression of PD-L1 in Ovarian Cancer. Cancers, 2022, 14, 2498.	3.7	12
273	Convergence of Nanotechnology and Cancer Prevention: Are We There Yet?. Cancer Prevention Research, 2014, 7, 973-992.	1.5	11
274	Isolation of Extracellular RNA from Serum/Plasma. Methods in Molecular Biology, 2018, 1740, 43-57.	0.9	11
275	Tumor T1 Relaxation Time for Assessing Response to Bevacizumab Anti-Angiogenic Therapy in a Mouse Ovarian Cancer Model. PLoS ONE, 2015, 10, e0131095.	2.5	10
276	Predicting Novel Therapies and Targets: Regulation of Notch3 by the Bromodomain Protein BRD4. Molecular Cancer Therapeutics, 2019, 18, 421-436.	4.1	10
277	The effect of platelet G proteins on platelet extravasation and tumor growth in the murine model of ovarian cancer. Blood Advances, 2021, 5, 1947-1951.	5.2	10
278	The Provocative Roles of Platelets in Liver Disease and Cancer. Frontiers in Oncology, 2021, 11, 643815.	2.8	10
279	ADAMTS16 mutations sensitize ovarian cancer cells to platinum-based chemotherapy. Oncotarget, 2017, 8, 88410-88420.	1.8	10
280	Dual Metronomic Chemotherapy with Nab-Paclitaxel and Topotecan Has Potent Antiangiogenic Activity in Ovarian Cancer. Molecular Cancer Therapeutics, 2015, 14, 2677-2686.	4.1	9
281	Role of YAP1 as a Marker of Sensitivity to Dual AKT and P70S6K Inhibition in Ovarian and Uterine Malignancies. Journal of the National Cancer Institute, 2017, 109, .	6.3	9
282	Sustained Adrenergic Activation of YAP1 Induces Anoikis Resistance in Cervical Cancer Cells. IScience, 2020, 23, 101289.	4.1	9
283	Role of Micro-RNA for Pain After Surgery. Anesthesia and Analgesia, 2020, 130, 1638-1652.	2.2	9
284	Targeting Forward and Reverse EphB4/EFNB2 Signaling by a Peptide with Dual Functions. Scientific Reports, 2020, 10, 520.	3.3	9
285	Reciprocal positive selection for weakness - preventing olaparib resistance by inhibiting BRCA2. Oncotarget, 2016, 7, 20825-20839.	1.8	9
286	Continuous anti-angiogenic therapy after tumor progression in patients with recurrent high-grade epithelial ovarian cancer: phase I trial experience. Oncotarget, 2016, 7, 35132-35143.	1.8	9
287	Assessment of In Vivo siRNA Delivery in Cancer Mouse Models. Methods in Molecular Biology, 2016, 1402, 189-197.	0.9	8
288	Delineation of retroperitoneal metastatic lymph nodes in ovarian cancer with near-infrared fluorescence imaging. Oncology Letters, 2017, 14, 2869-2877.	1.8	8

#	Article	lF	CITATIONS
289	Diagnosis-shift between low-grade serous ovarian cancer and serous borderline ovarian tumor: A population-based study. Gynecologic Oncology, 2020, 157, 21-28.	1.4	8
290	Significance of lymph node ratio on survival of women with borderline ovarian tumors. Archives of Gynecology and Obstetrics, 2020, 301, 1289-1298.	1.7	8
291	The clinical efficacy and safety of single-agent pembrolizumab in patients with recurrent granulosa cell tumors of the ovary: a case series from a phase II basket trial. Investigational New Drugs, 2021, 39, 829-835.	2.6	8
292	Fundamental Principles of Cancer Biology: Does It Have Relevance to the Perioperative Period?. Current Anesthesiology Reports, 2015, 5, 250-256.	2.0	7
293	Enhanced Immunotherapy with LHRH-R Targeted Lytic Peptide in Ovarian Cancer. Molecular Cancer Therapeutics, 2020, 19, 2396-2406.	4.1	7
294	Cost-effectiveness of laparoscopic disease assessment in patients with newly diagnosed advanced ovarian cancer. Gynecologic Oncology, 2021, 161, 56-62.	1.4	7
295	Biobehavioral and neuroendocrine correlates of antioxidant enzyme activity in ovarian carcinoma. Brain, Behavior, and Immunity, 2015, 50, 58-62.	4.1	6
296	Distinct TÂcell receptor repertoire diversity of clinically defined high-grade serous ovarian cancer treatment subgroups. IScience, 2021, 24, 102053.	4.1	6
297	Joint IARC/NCI International Cancer Seminar Series Report: expert consensus on future directions for ovarian carcinoma research. Carcinogenesis, 2021, 42, 785-793.	2.8	6
298	Timing of surgery in patients with partial response or stable disease after neoadjuvant chemotherapy for advanced ovarian cancer. Gynecologic Oncology, 2021, 161, 660-667.	1.4	6
299	Profiling Long Noncoding RNA Expression Using Custom-Designed Microarray. Methods in Molecular Biology, 2016, 1402, 33-41.	0.9	6
300	Of vascular defense, hemostasis, cancer, and platelet biology: an evolutionary perspective. Cancer and Metastasis Reviews, 2022, 41, 147-172.	5.9	6
301	Race-associated Molecular Changes in Gynecologic Malignancies. Cancer Research Communications, 2022, 2, 99-109.	1.7	6
302	Molecular Correlates of Venous Thromboembolism (VTE) in Ovarian Cancer. Cancers, 2022, 14, 1496.	3.7	6
303	Blockade of the Short Form of Prolactin Receptor Induces FOXO3a/EIF-4EBP1–Mediated Cell Death in Uterine Cancer. Molecular Cancer Therapeutics, 2020, 19, 1943-1954.	4.1	5
304	NRG1/ERBB3 Pathway Activation Induces Acquired Resistance to XPO1 Inhibitors. Molecular Cancer Therapeutics, 2020, 19, 1727-1735.	4.1	5
305	MEK inhibition overcomes resistance to EphA2-targeted therapy in uterine cancer. Gynecologic Oncology, 2021, 163, 181-190.	1.4	5
306	Immune microenvironment composition in high-grade serous ovarian cancers based on BRCA mutational status. Journal of Cancer Research and Clinical Oncology, 2021, 147, 3545-3555.	2.5	5

#	Article	IF	CITATIONS
307	Rational Combination of CRM1 Inhibitor Selinexor and Olaparib Shows Synergy in Ovarian Cancer Cell Lines and Mouse Models. Molecular Cancer Therapeutics, 2021, 20, 2352-2361.	4.1	5
308	Adrenergic-mediated increases in INHBA drive CAF phenotype and collagens. JCI Insight, 2018, 3, .	5.0	5
309	Targeting CCR2+ macrophages with BET inhibitor overcomes adaptive resistance to anti-VEGF therapy in ovarian cancer. Journal of Cancer Research and Clinical Oncology, 2022, 148, 803.	2.5	5
310	Novel markers for liquid biopsies in cancer management: Circulating platelets and extracellular vesicles. Molecular Cancer Therapeutics, 2022, , .	4.1	5
311	Reply to beta blockers in epithelial ovarian cancer and beta-blockers and improved survival from ovarian cancer: New miracle treatment or another case of immortal person-time bias?. Cancer, 2016, 122, 325-326.	4.1	4
312	Inhibiting Nuclear Phospho-Progesterone Receptor Enhances Antitumor Activity of Onapristone in Uterine Cancer. Molecular Cancer Therapeutics, 2018, 17, 464-473.	4.1	4
313	Can stress promote the pathophysiology of brain metastases? A critical review of biobehavioral mechanisms. Brain, Behavior, and Immunity, 2020, 87, 860-880.	4.1	4
314	Dasatinib, paclitaxel, and carboplatin in women with advanced-stage or recurrent endometrial cancer: A pilot clinical and translational study. Gynecologic Oncology, 2021, 161, 104-112.	1.4	4
315	Chronic difficulties are associated with poorer psychosocial functioning in the first year postâ€diagnosis in epithelial ovarian cancer patients. Psycho-Oncology, 2021, 30, 954-961.	2.3	4
316	Positive Psychosocial Factors and Oxytocin in the Ovarian Tumor Microenvironment. Psychosomatic Medicine, 2021, 83, 417-422.	2.0	4
317	Antihypertensive medication use and ovarian cancer survival. Gynecologic Oncology, 2021, 163, 342-347.	1.4	4
318	Therapeutic efficacy of liposomal Grb2 antisense oligodeoxynucleotide (L-Grb2) in preclinical models of ovarian and uterine cancer. Oncotarget, 2020, 11, 2819-2833.	1.8	4
319	Endothelial p130cas confers resistance to anti-angiogenesis therapy. Cell Reports, 2022, 38, 110301.	6.4	4
320	Genome-wide perturbations by miRNAs map onto functional cellular pathways, identifying regulators of chromatin modifiers. Npj Systems Biology and Applications, 2015, 1, 15001.	3.0	3
321	Association of biobehavioral factors with non-coding RNAs in cervical cancer. BioScience Trends, 2018, 12, 24-31.	3.4	3
322	A Modified 2 Tier Chemotherapy Response Score (CRS) and Other Histopathologic Features for Predicting Outcomes of Patients with Advanced Extrauterine High-Grade Serous Carcinoma after Neoadjuvant Chemotherapy. Cancers, 2021, 13, 704.	3.7	3
323	Factors associated with response to neoadjuvant chemotherapy in advanced stage ovarian cancer. Gynecologic Oncology, 2021, 162, 65-71.	1.4	3
324	Gene Body Methylation of the Lymphocyte-Specific Gene <i>CARD11</i> Results in Its Overexpression and Regulates Cancer mTOR Signaling. Molecular Cancer Research, 2022, 19, 1917-1928.	3.4	3

#	Article	IF	CITATIONS
325	NO-dependent attenuation of TPA-induced immunoinflammatory skin changes in Balb/c mice by pindolol, heptaminol or ATRA, but not by verapamil. Oncotarget, 2016, 7, 47576-47585.	1.8	3
326	Correlation of surgeon radiology assessment with laparoscopic disease site scoring in patients with advanced ovarian cancer. International Journal of Gynecological Cancer, 2021, 31, 92-97.	2.5	3
327	The complexity of tumor vascularity. Cancer Biology and Therapy, 2003, 2, 257-8.	3.4	3
328	Clinical analysis of pathologic complete responders in advanced-stage ovarian cancer. Gynecologic Oncology, 2022, 165, 82-89.	1.4	2
329	A practical guide for the safe implementation of early phase drug development and immunotherapy program in gynecologic oncology practice. Gynecologic Oncology, 2018, 151, 374-380.	1.4	1
330	A Solution to the Dilution: The Role for Biomarkers in Advanced Ovarian Cancer. Clinical Cancer Research, 2020, 26, 9-10.	7.0	1
331	Assessment of In Vivo siRNA Delivery in Mouse Models. Methods in Molecular Biology, 2021, 2372, 157-168.	0.9	1
332	Attributions of survival and methods of coping of long-term ovarian cancer survivors: a qualitative study. BMC Women's Health, 2021, 21, 376.	2.0	1
333	Inactivating Mutations of the IK Gene Weaken Ku80/Ku70-Mediated DNA Repair and Sensitize Endometrial Cancer to Chemotherapy. Cancers, 2021, 13, 2487.	3.7	0
334	Platelet Function in Ovarian Cancer. Blood, 2015, 126, 4656-4656.	1.4	0
335	Immunological consequences of ageing microvascular hemodynamic changes in view of cancer development and treatment. Oncotarget, 2017, 8, 69047-69061.	1.8	0
336	Role of Platelets in Adaptive Changes to Anti-Angiogenesis Therapy. Blood, 2017, 130, SCI-27-SCI-27.	1.4	0
337	Pathologic distribution at the time of interval tumor reductive surgery informs personalized surgery for high-grade ovarian cancer. International Journal of Gynecological Cancer, 2021, 31, 232-237.	2.5	0