
Darlene E Berryman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9211871/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing utility of a lifestyle-based tool in the clinical setting as a primordial prevention strategy: The Healthy Heart Score. Chronic Illness, 2022, 18, 105-118.	1.5	4
2	Growth hormone alters gross anatomy and morphology of the small and large intestines in age- and sex-dependent manners. Pituitary, 2022, 25, 116-130.	2.9	7
3	Regulation of 11β-HSD1 by GH/IGF-1 in key metabolic tissues may contribute to metabolic disease in GH deficient patients. Growth Hormone and IGF Research, 2022, 62, 101440.	1.1	3
4	Mice with gene alterations in the GH and IGF family. Pituitary, 2022, 25, 1-51.	2.9	21
5	Chasing Methuselah: adult inducible GHRKO mice. Aging, 2022, undefined, .	3.1	1
6	Excess Growth Hormone Alters the Male Mouse Gut Microbiome in an Age-dependent Manner. Endocrinology, 2022, 163, .	2.8	4
7	Musculoskeletal Effects of Altered GH Action. Frontiers in Physiology, 2022, 13, .	2.8	5
8	Covert actions of growth hormone: fibrosis, cardiovascular diseases and cancer. Nature Reviews Endocrinology, 2022, 18, 558-573.	9.6	13
9	Mouse models of growth hormone insensitivity. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 17-29.	5.7	4
10	Transcriptome profiling of insulin sensitive tissues from GH deficient mice following GH treatment. Pituitary, 2021, 24, 384-399.	2.9	4
11	Growth hormone receptor gene disruption in matureâ€adult mice improves male insulin sensitivity and extends female lifespan. Aging Cell, 2021, 20, e13506.	6.7	28
12	The effects of growth hormone on adipose tissue: old observations, new mechanisms. Nature Reviews Endocrinology, 2020, 16, 135-146.	9.6	83
13	Crosstalk between the growth hormone/insulin-like growth factor-1 axis and the gut microbiome: A new frontier for microbial endocrinology. Growth Hormone and IGF Research, 2020, 53-54, 101333.	1.1	25
14	Differential gene signature in adipose tissue depots of growth hormone transgenic mice. Journal of Neuroendocrinology, 2020, 32, e12893.	2.6	5
15	Growth Hormone Upregulates Mediators of Melanoma Drug Efflux and Epithelial-to-Mesenchymal Transition In Vitro and In Vivo. Cancers, 2020, 12, 3640.	3.7	8
16	GHR â^'/â^' Mice are protected from obesityâ€related white adipose tissue inflammation. Journal of Neuroendocrinology, 2020, 32, e12854.	2.6	6
17	The Effects of 20-kDa Human Placental GH in Male and Female GH-deficient Mice: An Improved Human GH?. Endocrinology, 2020, 161, .	2.8	9
18	Growth Hormone Deficiency and Excess Alter the Gut Microbiome in Adult Male Mice. Endocrinology, 2020, 161, .	2.8	22

#	Article	IF	CITATIONS
19	New insights of growth hormone (GH) actions from tissue-specific GH receptor knockouts in mice. Archives of Endocrinology and Metabolism, 2020, 63, 557-567.	0.6	14
20	Heterogeneity spacers in 16S rDNA primers improve analysis of mouse gut microbiomes via greater nucleotide diversity. BioTechniques, 2019, 67, 55-62.	1.8	14
21	GH Knockout Mice Have Increased Subcutaneous Adipose Tissue With Decreased Fibrosis and Enhanced Insulin Sensitivity. Endocrinology, 2019, 160, 1743-1756.	2.8	35
22	The enigmatic role of growth hormone in age-related diseases, cognition, and longevity. GeroScience, 2019, 41, 759-774.	4.6	29
23	Growth Hormone Upregulates Melanocyte-Inducing Transcription Factor Expression and Activity via JAK2-STAT5 and SRC Signaling in GH Receptor-Positive Human Melanoma. Cancers, 2019, 11, 1352.	3.7	20
24	ALS blood expression profiling identifies new biomarkers, patient subgroups, and evidence for neutrophilia and hypoxia. Journal of Translational Medicine, 2019, 17, 170.	4.4	45
25	Characterization of an intestine-specific GH receptor knockout (IntGHRKO) mouse. Growth Hormone and IGF Research, 2019, 46-47, 5-15.	1.1	20
26	Growth hormone impact on adipose tissue and aging. Current Opinion in Endocrine and Metabolic Research, 2019, 5, 45-57.	1.4	0
27	Adipocyte-Specific GH Receptor–Null (AdGHRKO) Mice Have Enhanced Insulin Sensitivity With Reduced Liver Triglycerides. Endocrinology, 2019, 160, 68-80.	2.8	40
28	MON-LB018 Depot-Specific Differences in Adipose Tissue Morphology with Laron Syndrome. Journal of the Endocrine Society, 2019, 3, .	0.2	0
29	Phenylmethimazole abrogates diet-induced inflammation, glucose intolerance and NAFLD. Journal of Endocrinology, 2018, 237, 337-351.	2.6	5
30	Depot-specific and GH-dependent regulation of IGF binding protein-4, pregnancy-associated plasma protein-A, and stanniocalcin-2 in murine adipose tissue. Growth Hormone and IGF Research, 2018, 39, 54-61.	1.1	21
31	Increased fibrosis: A novel means by which GH influences white adipose tissue function. Growth Hormone and IGF Research, 2018, 39, 45-53.	1.1	22
32	Regional Variations in Physical Fitness and Activity in Healthy and Overweight Ecuadorian Adolescents. Children, 2018, 5, 104.	1.5	4
33	Obesity and the Growth Hormone Axis. , 2018, , 321-344.		0
34	The Complexity of Adipose Tissue. , 2018, , 205-223.		1
35	Growth hormone controls lipolysis by regulation of FSP27 expression. Journal of Endocrinology, 2018, 239, 289-301.	2.6	31
36	Transcriptional profiling identifies strain-specific effects of caloric restriction and opposite responses in human and mouse white adipose tissue. Aging, 2018, 10, 701-746.	3.1	9

#	Article	IF	CITATIONS
37	Increased environmental temperature normalizes energy metabolism outputs between normal and Ames dwarf mice. Aging, 2018, 10, 2709-2722.	3.1	13
38	Insulin, IGF-1, and GH Receptors Are Altered in an Adipose Tissue Depot–Specific Manner in Male Mice With Modified GH Action. Endocrinology, 2017, 158, 1406-1418.	2.8	14
39	Cardiometabolic risk factors, metabolic syndrome and pre-diabetes in adolescents in the Sierra region of Ecuador. Diabetology and Metabolic Syndrome, 2017, 9, 24.	2.7	4
40	Impact of Growth Hormone on Regulation of Adipose Tissue. , 2017, 7, 819-840.		19
41	<i>Tbx15</i> Defines a Glycolytic Subpopulation and White Adipocyte Heterogeneity. Diabetes, 2017, 66, 2822-2829.	0.6	37
42	Growth Hormone's Effect on Adipose Tissue: Quality versus Quantity. International Journal of Molecular Sciences, 2017, 18, 1621.	4.1	52
43	Assessment of Nutrition Knowledge and Attitudes in Preclinical Osteopathic Medical Students. Journal of Osteopathic Medicine, 2017, 117, 622-633.	0.8	19
44	Diet-induced weight loss is sufficient to reduce senescent cell number in white adipose tissue of weight-cycled mice. Nutrition and Healthy Aging, 2016, 4, 95-99.	1.1	12
45	Cardiac-Specific Disruption of GH Receptor Alters Glucose Homeostasis While Maintaining Normal Cardiac Performance in Adult Male Mice. Endocrinology, 2016, 157, 1929-1941.	2.8	20
46	Fibroblast growth factor 21, fibroblast growth factor receptor 1, and β-Klotho expression in bovine growth hormone transgenic and growth hormone receptor knockout mice. Growth Hormone and IGF Research, 2016, 30-31, 22-30.	1.1	15
47	Disruption of the CH Receptor Gene in Adult Mice Increases Maximal Lifespan in Females. Endocrinology, 2016, 157, 4502-4513.	2.8	64
48	Growth Hormone Receptor Antagonist Transgenic Mice Have Increased Subcutaneous Adipose Tissue Mass, Altered Glucose Homeostasis and No Change in White Adipose Tissue Cellular Senescence. Gerontology, 2016, 62, 163-172.	2.8	15
49	Glucose and Fat Metabolism in Acromegaly: From Mice Models to Patient Care. Neuroendocrinology, 2016, 103, 96-105.	2.5	27
50	Developments in our understanding of the effects of growth hormone on white adipose tissue from mice: implications to the clinic. Expert Review of Endocrinology and Metabolism, 2016, 11, 197-207.	2.4	8
51	Growth hormone modulates hypothalamic inflammation in longâ€lived pituitary dwarf mice. Aging Cell, 2015, 14, 1045-1054.	6.7	70
52	Transcriptome profiling reveals divergent expression shifts in brown and white adipose tissue from long-lived GHRKO mice. Oncotarget, 2015, 6, 26702-26715.	1.8	25
53	Regulation of mTOR Activity in Snell Dwarf and GH Receptor Gene-Disrupted Mice. Endocrinology, 2015, 156, 565-575.	2.8	77
54	Male Bovine GH Transgenic Mice Have Decreased Adiposity With an Adipose Depot-Specific Increase in Immune Cell Populations. Endocrinology, 2015, 156, 1794-1803.	2.8	33

#	Article	IF	CITATIONS
55	Living Large: What Mouse Models Reveal about Growth Hormone and Obesity. Energy Balance and Cancer, 2015, , 65-95.	0.2	4
56	GH action influences adipogenesis of mouse adipose tissue-derived mesenchymal stem cells. Journal of Endocrinology, 2015, 226, 13-23.	2.6	36
57	Expression of Apoptosis-Related Genes in Liver-Specific Growth Hormone Receptor Gene-Disrupted Mice Is Sex Dependent. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 44-52.	3.6	14
58	Growth Hormone Receptor Antagonist Transgenic Mice Are Protected From Hyperinsulinemia and Glucose Intolerance Despite Obesity When Placed on a HF Diet. Endocrinology, 2015, 156, 555-564.	2.8	22
59	Gene expression of key regulators of mitochondrial biogenesis is sex dependent in mice with growth hormone receptor deletion in liver. Aging, 2015, 7, 195-204.	3.1	34
60	Removal of growth hormone receptor (GHR) in muscle of male mice replicates some of the health benefits seen in global GHRâ^'/â^' mice. Aging, 2015, 7, 500-512.	3.1	46
61	A Dwarf Mouse Model With Decreased GH/IGF-1 Activity That Does Not Experience Life-Span Extension: Potential Impact of Increased Adiposity, Leptin, and Insulin With Advancing Age. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69A, 131-141.	3.6	24
62	Elevated Systolic Blood Pressure in Male GH Transgenic Mice Is Age Dependent. Endocrinology, 2014, 155, 975-986.	2.8	27
63	Evaluation of growth hormone (GH) action in mice: Discovery of GH receptor antagonists and clinical indications. Molecular and Cellular Endocrinology, 2014, 386, 34-45.	3.2	67
64	Age-Related and Depot-Specific Changes in White Adipose Tissue of Growth Hormone Receptor-Null Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 34-43.	3.6	16
65	Liver-Specific GH Receptor Gene-Disrupted (LiGHRKO) Mice Have Decreased Endocrine IGF-I, Increased Local IGF-I, and Altered Body Size, Body Composition, and Adipokine Profiles. Endocrinology, 2014, 155, 1793-1805.	2.8	125
66	Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging, 2014, 6, 575-586.	3.1	107
67	The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations. Nature Reviews Endocrinology, 2013, 9, 346-356.	9.6	183
68	The GH/IGF-1 axis in ageing and longevity. Nature Reviews Endocrinology, 2013, 9, 366-376.	9.6	418
69	Adiponectin in mice with altered GH action: links to insulin sensitivity and longevity?. Journal of Endocrinology, 2013, 216, 363-374.	2.6	48
70	The Role of GH in Adipose Tissue: Lessons from Adipose-Specific GH Receptor Gene-Disrupted Mice. Molecular Endocrinology, 2013, 27, 524-535.	3.7	131
71	Direct and indirect effects of growth hormone receptor ablation on liver expression of xenobiotic metabolizing genes. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E942-E950.	3.5	19
72	The effects of weight cycling on lifespan in male C57BL/6J mice. International Journal of Obesity, 2013, 37, 1088-1094.	3.4	38

#	Article	IF	CITATIONS
73	Repression of GH signaling: One extended life to live!. Aging, 2013, 5, 723-724.	3.1	Ο
74	Heterogeneity Among White Adipose Tissue Depots in Male C57BL/6J Mice. Obesity, 2012, 20, 101-111.	3.0	80
75	Decreased insulin sensitivity and increased oxidative damage in wasting adipose tissue depots of wild-type mice. Age, 2012, 34, 1225-1237.	3.0	12
76	Age- and Sex-Associated Plasma Proteomic Changes in Growth Hormone Receptor Gene–Disrupted Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67, 830-840.	3.6	13
77	Growth hormone and adipose tissue: Beyond the adipocyte. Growth Hormone and IGF Research, 2011, 21, 113-123.	1.1	73
78	Plasma proteomic profiles of bovine growth hormone transgenic mice as they age. Transgenic Research, 2011, 20, 1305-1320.	2.4	23
79	Endocrine Parameters and Phenotypes of the Growth Hormone Receptor Gene Disrupted (GHRâ^'/â^') Mouse. Endocrine Reviews, 2011, 32, 356-386.	20.1	155
80	Body Composition, Adipose Tissue, and Energy Balance. , 2011, , 441-449.		1
81	Growth Hormone and Translational Research: From the 'Bench' to the 'Bedside'. Endocrinology and Metabolism, 2011, 26, 285.	3.0	0
82	Using Food as a Tool to Teach Science to 3rd Grade Students in Appalachian Ohio. Journal of Food Science Education, 2010, 9, 41-46.	1.0	14
83	School-Based Screening of the Dietary Intakes of Third Graders in Rural Appalachian Ohio. Journal of School Health, 2010, 80, 536-543.	1.6	13
84	Two-Year Body Composition Analyses of Long-Lived GHR Null Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2010, 65A, 31-40.	3.6	120
85	Daily energy balance in growth hormone receptor/binding protein (GHR â^'/â^') gene-disrupted mice is achieved through an increase in dark-phase energy efficiency. Growth Hormone and IGF Research, 2010, 20, 73-79.	1.1	17
86	Total and high molecular weight adiponectin levels in mice with altered GH signaling. FASEB Journal, 2010, 24, 547.1.	0.5	0
87	Age-Related Changes in Body Composition of Bovine Growth Hormone Transgenic Mice. Endocrinology, 2009, 150, 1353-1360.	2.8	86
88	Reduced Incidence and Delayed Occurrence of Fatal Neoplastic Diseases in Growth Hormone Receptor/Binding Protein Knockout Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 522-529.	3.6	206
89	Growth hormone improves body composition, fasting blood glucose, glucose tolerance and liver triacylglycerol in a mouse model of diet-induced obesity and type 2 diabetes. Diabetologia, 2009, 52, 1647-1655.	6.3	69
90	Role of the GH/IGF-1 axis in lifespan and healthspan: Lessons from animal models. Growth Hormone and IGF Research, 2008, 18, 455-471.	1.1	249

#	Article	IF	CITATIONS
91	Loss of Cytokine-STAT5 Signaling in the CNS and Pituitary Gland Alters Energy Balance and Leads to Obesity. PLoS ONE, 2008, 3, e1639.	2.5	75
92	CIDE-A gene expression is decreased in white adipose tissue of growth hormone receptor/binding protein gene disrupted mice and with high-fat feeding of normal mice. Growth Hormone and IGF Research, 2007, 17, 346-351.	1,1	18
93	CIDE-A is expressed in liver of old mice and in type 2 diabetic mouse liver exhibiting steatosis. Comparative Hepatology, 2007, 6, 4.	0.9	23
94	Analysis of mouse skin reveals proteins that are altered in a diet-induced diabetic state: A new method for detection of type 2 diabetes. Proteomics, 2007, 7, 1140-1149.	2.2	31
95	Discovery and uses of pegvisomant: a growth hormone antagonist. Endokrynologia Polska, 2007, 58, 322-9.	1.0	2
96	Creating a New Paradigm for Premedical Undergraduate Studies: Physicians' Perceptions of Subjects and Skills Critical for Success in Medical School and Practice. Medical Education Online, 2006, 11, 4606.	2.6	3
97	Elevated Body Image Dissatisfaction Relates to Body Size of Appalachian Children. Topics in Clinical Nutrition, 2006, 21, 101-107.	0.4	2
98	Dietetics Students Possess Negative Attitudes toward Obesity Similar to Nondietetics Students. Journal of the American Dietetic Association, 2006, 106, 1678-1682.	1.1	69
99	Effect of Growth Hormone on Susceptibility to Diet-Induced Obesity. Endocrinology, 2006, 147, 2801-2808.	2.8	93
100	Chronic Changes in Peripheral Growth Hormone Levels Do Not Affect Ghrelin Stomach mRNA Expression and Serum Ghrelin Levels in Three Transgenic Mouse Models. Journal of Neuroendocrinology, 2004, 16, 669-675.	2.6	18
101	Comparing adiposity profiles in three mouse models with altered GH signaling. Growth Hormone and IGF Research, 2004, 14, 309-318.	1.1	244
102	Binding of hepatic lipase to heparin: identification of specific heparin-binding residues in two distinct positive charge clusters. Journal of Lipid Research, 2000, 41, 260-268.	4.2	21
103	Oligomeric structure of hepatic lipase: evidence from a novel epitope tag technique. BBA - Proteins and Proteomics, 1998, 1382, 217-229.	2.1	10
104	Genetics and molecular biology of hepatic lipase. Current Opinion in Lipidology, 1996, 7, 77-81.	2.7	51
105	Heparan Sulfate Proteoglycans Are Primarily Responsible for the Maintenance of Enzyme Activity, Binding, and Degradation of Lipoprotein Lipase in Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 1995, 270, 24525-24531.	3.4	53
106	Growth hormone receptor antagonism downregulates ATP-binding cassette transporters contributing to improved drug efficacy against melanoma and hepatocarcinoma in vivo. Frontiers in Oncology, 0, 12, .	2.8	4