
Guangjie Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9209998/publications.pdf Version: 2024-02-01

CHANCHE HUANC

#	Article	IF	CITATIONS
1	Effect of Initial Microstructure on the Hot Deformation Behavior and Microstructure Evolution of Aluminum Alloy AA2060. Metals and Materials International, 2022, 28, 1561-1574.	3.4	2
2	A quantitative study on planar mechanical anisotropy of a Mg-2Zn-1Ca alloy. Journal of Materials Science and Technology, 2022, 109, 30-48.	10.7	15
3	Solute atom mediated Hall-Petch relations for magnesium binary alloys. Scripta Materialia, 2022, 210, 114451.	5.2	24
4	Microstructure and Texture of an Aluminum Plate Produced by Multipass Cold Rolling and Graded Annealing Process. Metals, 2022, 12, 260.	2.3	6
5	Effect of Residual Deformation Energy and Critical Heating Rate on Cubic Texture and Grain Growth Behavior of Severely Deformed Aluminum Foil. Materials, 2022, 15, 1395.	2.9	1
6	Microstructure refinement, strengthening and ductilization mechanisms in Al–Mg–Mn–Er–Zr alloy with high Mn content by friction stir processing. Materials Characterization, 2022, 189, 111939.	4.4	11
7	Tailoring the microstructure and texture of a dual-phase Mg–8Li alloy by varying the rolling path. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 844, 143202.	5.6	5
8	The evolution of main textures and the formation of P orientation with nanoprecipitates after friction stir processing. Journal of Manufacturing Processes, 2022, 80, 591-599.	5.9	2
9	Quantitative analysis of grain structure and texture evolution of dissimilar AA2024/7075 joints manufactured by friction stir welding. Materials Today Communications, 2021, 26, 101920.	1.9	6
10	Orientation-Dependent Characteristics for Residual Grains during Hot Deformation of Nickel-Based Alloy 925. Acta Metallurgica Sinica (English Letters), 2021, 34, 1296-1306.	2.9	4
11	Research on local corrosion behavior of thermo-mechanically affected zone in dissimilar AA2024/7075 friction stir welds. Intermetallics, 2021, 130, 107081.	3.9	21
12	Effect of Two-Stage Homogenization Heat Treatment on Microstructure and Mechanical Properties of AA2060 Alloy. Crystals, 2021, 11, 40.	2.2	3
13	Fracture morphology and crack mechanism in pure polycrystalline magnesium under tension–compression fatigue testing. Rare Metals, 2020, 39, 162-168.	7.1	6
14	Influence of tool rotational speed on local microstructure, mechanical and corrosion behavior of dissimilar AA2024/7075 joints fabricated by friction stir welding. Journal of Manufacturing Processes, 2020, 49, 214-226.	5.9	52
15	Characterizations of microstructure, crystallographic texture and mechanical properties of dissimilar friction stir welding joints for AA2024 and AA7075 under different tool shoulder end profiles. Materials Today Communications, 2020, 25, 101435.	1.9	11
16	Investigation on microstructure and localized corrosion behavior in the stir zone of dissimilar friction-stir-welded AA2024/7075 joint. Journal of Materials Science, 2020, 55, 15005-15032.	3.7	18
17	Microstructure and mechanical properties in dissimilar friction stir welded AA2024/7075 joints at high heat input: effect of post-weld heat treatment. Journal of Materials Research and Technology, 2020, 9, 14771-14782.	5.8	17
18	Hot Deformation Behavior and Microstructure Characterization of an Al-Cu-Li-Mg-Ag Alloy. Crystals, 2020, 10, 416.	2.2	16

GUANGJIE HUANG

#	Article	IF	CITATIONS
19	Microstructure evolution of thermo-mechanically affected zone in dissimilar AA2024/7075 joint produced by friction stir welding. Vacuum, 2020, 179, 109515.	3.5	20
20	Dynamic behavior and modified artificial neural network model for predicting flow stress during hot deformation of Alloy 925. Materials Today Communications, 2020, 25, 101329.	1.9	26
21	Microstructure and mechanical properties of dissimilar friction stir welded AA2024-7075 joints: Influence of joining material direction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138368.	5.6	26
22	Effect of Heat Treatment Condition on the Flow Behavior and Recrystallization Mechanisms of Aluminum Alloy 7055. Materials, 2019, 12, 311.	2.9	25
23	On the microstructure and mechanical properties of similar and dissimilar AA7075 and AA2024 friction stir welding joints: Effect of rotational speed. Journal of Manufacturing Processes, 2019, 37, 470-487.	5.9	48
24	Optimization of Tensile and Corrosion Properties of Dissimilar Friction Stir Welded AA2024-7075 Joints. Journal of Materials Engineering and Performance, 2019, 28, 183-199.	2.5	16
25	Effect of dynamic strain aging and precipitation on the hot deformation behavior of 253MA heat-resistant alloy. Journal of Materials Science, 2019, 54, 1716-1727.	3.7	12
26	Effect of pre-recovery on subsequent recrystallization kinetics in moderately deformed and supersaturated Al-Mn alloys. Journal of Central South University, 2018, 25, 534-542.	3.0	2
27	Influence of dynamic strain aging on the mechanical properties and microstructural evolution for Alloy 800H during hot deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 724, 37-44.	5.6	21
28	Effect of ageing temperature on precipitation of Al-Cu-Li-Mn-Zr alloy. Journal of Central South University, 2018, 25, 1340-1349.	3.0	8
29	Partial transient-liquid-phase bonding of TiC cermet to stainless steel using impulse pressuring with Ti/Cu/Nb interlayer. Journal of Central South University, 2018, 25, 1025-1032.	3.0	7
30	The effect of hot rolling regime on texture and mechanical properties of an as-cast Mg–2Zn–2Gd plate. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 731, 288-295.	5.6	22
31	Hot deformation behavior and microstructure of AA2195 alloy under plane strain compression. Materials Characterization, 2017, 131, 500-507.	4.4	55
32	Evaluation of Textural Effect on the Rollability of AZ31 Alloys by Wedgeâ€ S haped Sample Design. Advanced Engineering Materials, 2017, 19, 1700035.	3.5	2
33	Tailoring the microstructure and mechanical properties of the final Al-Mn foils by different intermediate annealing process. Journal of Materials Science and Technology, 2017, 33, 961-970.	10.7	7
34	Investigation on formation mechanism of T1 precipitate in an Al-Cu-Li alloy. Journal of Alloys and Compounds, 2017, 723, 661-666.	5.5	72
35	Influence of pre-recovery on the subsequent recrystallization and mechanical properties of a twin-roll cast Al-Mn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 63-72.	5.6	25
36	Tailoring the texture and mechanical anisotropy of a Mg–2Zn–2Gd plate by varying the rolling path. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 653, 93-98.	5.6	39

GUANGJIE HUANG

#	Article	IF	CITATIONS
37	Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe. PLoS ONE, 2015, 10, e0131574.	2.5	4
38	Influence of extrusion ratio on microstructure and texture developments of high-temperature extruded AZ31 Mg alloy. Science China Technological Sciences, 2012, 55, 490-495.	4.0	11
39	Tailoring the texture of magnesium alloy by twinning deformation to improve the rolling capability. Scripta Materialia, 2011, 64, 986-989.	5.2	168
40	Influence of rolling ways on microstructure and anisotropy of AZ31 alloy sheet. Transactions of Nonferrous Metals Society of China, 2010, 20, s589-s593.	4.2	28
41	Dislocation Boundary Structure from Low to Medium Strain of Cold Rolling AA3104 Aluminum Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 1487-1497.	2.2	18
42	Microstructure evolution of cast Al-Si-Cu alloys in solution treatment. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 184-188.	1.0	3
43	Computation model for corrosion resistance of nanocrystalline zircaloy-4. Frontiers of Energy and Power Engineering in China, 2008, 2, 386-389.	0.4	1