List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9208054/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustainable regeneration in uneven-aged mixed deciduous forests managed by selection silviculture: the role of demographic structure. Forestry, 2022, 95, 201-214.	2.3	6
2	Survival time and mortality rate of regeneration in the deep shade of a primeval beech forest. European Journal of Forest Research, 2022, 141, 43-58.	2.5	7
3	Natural forest regrowth under different land use intensities and landscape configurations in the Brazilian Atlantic Forest. Forest Ecology and Management, 2022, 508, 120012.	3.2	8
4	Managementâ€based mitigation of the impacts of climateâ€driven woody encroachment in high elevation pasture woodlands. Journal of Applied Ecology, 2022, 59, 1925-1936.	4.0	4
5	Tree species admixture increases ecosystem service provision in simulated spruce- and beech-dominated stands. European Journal of Forest Research, 2022, 141, 801-820.	2.5	3
6	Tree regeneration in models of forest dynamics – Suitability to assess climate change impacts on European forests. Forest Ecology and Management, 2022, 520, 120390.	3.2	15
7	Light availability predicts mortality probability of conifer saplings in Swiss mountain forests better than radial growth and tree size. Forest Ecology and Management, 2021, 479, 118607.	3.2	3
8	Long-term tree species population dynamics in Swiss forest reserves influenced by forest structure and climate. Forest Ecology and Management, 2021, 481, 118666.	3.2	9
9	Beyond forest succession: A gap model to study ecosystem functioning and tree community composition under climate change. Functional Ecology, 2021, 35, 955-975.	3.6	19
10	From small forest samples to generalised uni―and bimodal stand descriptions. Methods in Ecology and Evolution, 2021, 12, 634-645.	5.2	6
11	Tackling unresolved questions in forest ecology: The past and future role of simulation models. Ecology and Evolution, 2021, 11, 3746-3770.	1.9	37
12	Evaluating five forest models using multi-decadal inventory data from mountain forests. Ecological Modelling, 2021, 445, 109493.	2.5	9
13	Standâ€scale climate change impacts on forests over large areas: transient responses and projection uncertainties. Ecological Applications, 2021, 31, e02313.	3.8	19
14	Mixing tree species at different spatial scales: The effect of alpha, beta and gamma diversity on disturbance impacts under climate change. Journal of Applied Ecology, 2021, 58, 1749-1763.	4.0	13
15	Abiotic and biotic determinants of height growth of Picea abies regeneration in small forest gaps in the Swiss Alps. Forest Ecology and Management, 2021, 490, 119076.	3.2	6
16	Growth resistance and resilience of mixed silver fir and Norway spruce forests in central Europe: Contrasting responses to mild and severe droughts. Global Change Biology, 2021, 27, 4403-4419.	9.5	64
17	Grow slowly, persist, dominate—Explaining beech dominance in a primeval forest. Ecology and Evolution, 2021, 11, 10077-10089.	1.9	12
18	Magnitude and timing of density reduction are key for the resilience to severe drought in conifer-broadleaf mixed forests in Central Europe. Annals of Forest Science, 2021, 78, 1.	2.0	16

#	Article	IF	CITATIONS
19	Spatial patterns of living and dead small trees in subalpine Norway spruce forest reserves in Switzerland. Forest Ecology and Management, 2021, 494, 119315.	3.2	3
20	Tree recruitment is determined by stand structure and shade tolerance with uncertain role of climate and water relations. Ecology and Evolution, 2021, 11, 12182-12203.	1.9	15
21	Phenological shifts induced by climate change amplify drought for broad-leaved trees at low elevations in Switzerland. Agricultural and Forest Meteorology, 2021, 307, 108485.	4.8	22
22	Silver fir (Abies alba Mill.) is able to thrive and prosper under meso-Mediterranean conditions. Forest Ecology and Management, 2021, 498, 119537.	3.2	15
23	An evaluation of multi-species empirical tree mortality algorithms for dynamic vegetation modelling. Scientific Reports, 2021, 11, 19845.	3.3	7
24	Waldlabor Zürich: Das Reallabor für angewandte Forschung und umfassenden Wissenstransfer zu Waldthemen nimmt Gestalt an. Gaia, 2021, 30, 200-203.	0.7	0
25	Projecting Forest Dynamics Across Europe: Potentials and Pitfalls of Empirical Mortality Algorithms. Ecosystems, 2020, 23, 188-203.	3.4	9
26	Bayesian calibration of a growthâ€dependent tree mortality model to simulate the dynamics of European temperate forests. Ecological Applications, 2020, 30, e02021.	3.8	12
27	Vertical light transmission profiles in structured mixed deciduous forest canopies assessed by UAV-based hemispherical photography and photogrammetric vegetation height models. Agricultural and Forest Meteorology, 2020, 281, 107843.	4.8	15
28	Contrasting patterns of natural mortality in primary Picea forests of the Carpathian Mountains. Forest Ecology and Management, 2020, 457, 117734.	3.2	16
29	Disturbances and Climate Drive Structure, Stability, and Growth in Mixed Temperate Old-growth Rainforests in the Caucasus. Ecosystems, 2020, 23, 1170-1185.	3.4	9
30	How robust are future projections of forest landscape dynamics? Insights from a systematic comparison of four forest landscape models. Environmental Modelling and Software, 2020, 134, 104844.	4.5	34
31	Growth and resource allocation of juvenile European beech and sycamore maple along light availability gradients in uneven-aged forests. Forest Ecology and Management, 2020, 474, 118314.	3.2	14
32	Cross-regional modelling of fire occurrence in the Alps and the Mediterranean Basin. International Journal of Wildland Fire, 2020, 29, 712.	2.4	10
33	Capturing ecological processes in dynamic forest models: why there is no silver bullet to cope with complexity. Ecosphere, 2020, 11, e03109.	2.2	18
34	Climate change impacts across a large forest enterprise in the Northern Pre-Alps: dynamic forest modelling as a tool for decision support. European Journal of Forest Research, 2020, 139, 483-498.	2.5	22
35	How does varying water supply affect oxygen isotope variations in needles and tree rings of Scots pine?. Tree Physiology, 2020, 40, 1366-1380.	3.1	7
36	Assessing the response of forest productivity to climate extremes in Switzerland using model–data fusion. Global Change Biology, 2020, 26, 2463-2476.	9.5	54

#	Article	IF	CITATIONS
37	Tree diversity reduced to the bare essentials. Science, 2020, 368, 128-129.	12.6	2
38	Früherkennung von Buchdruckerbefall dank Fern erkundung: Was ist schon möglich?. Schweizerische Zeitschrift Fur Forstwesen, 2020, 171, 36-43.	0.1	3
39	Entwicklung von MischbestÃ ¤ den mit komplexer Struktur im Klimawandel. Schweizerische Zeitschrift Fur Forstwesen, 2020, 171, 133-141.	0.1	Ο
40	BorkenkÃ fe rdynamik im Klimawandel: die Bedeutung der Landschaftsebene. Schweizerische Zeitschrift Fur Forstwesen, 2020, 171, 142-150.	0.1	0
41	Modelle? Brauche ich nicht. Modellieren? Tue ich nicht – oder vielleicht doch?. Schweizerische Zeitschrift Fur Forstwesen, 2020, 171, 110-115.	0.1	0
42	Wie plant man das Unplanbare? Neue Herausforderungen für die Forstwirtschaft (Essay). Schweizerische Zeitschrift Fur Forstwesen, 2020, 171, 198-202.	0.1	0
43	Early emergence increases survival of tree seedlings in Central European temperate forests despite severe late frost. Ecology and Evolution, 2019, 9, 8238-8252.	1.9	20
44	Comparative dendroecological characterisation of Ailanthus altissima (Mill.) Swingle in its native and introduced range. Dendrochronologia, 2019, 57, 125608.	2.2	2
45	How multiple and interacting disturbances shape tree diversity in European mountain landscapes. Landscape Ecology, 2019, 34, 1279-1294.	4.2	8
46	Determining sectoral and regional sensitivity to climate and socio-economic change in Europe using impact response surfaces. Regional Environmental Change, 2019, 19, 679-693.	2.9	21
47	Tree mortality submodels drive simulated longâ€ŧerm forest dynamics: assessing 15 models from the stand to global scale. Ecosphere, 2019, 10, e02616.	2.2	93
48	High growth potential of Ailanthus altissima in warm and dry weather conditions in novel forests of southern Switzerland. Trees - Structure and Function, 2019, 33, 395-409.	1.9	7
49	How do tree mortality models from combined tree-ring and inventory data affect projections of forest succession?. Forest Ecology and Management, 2019, 433, 606-617.	3.2	17
50	AbschÃæung des Einflusses von Verbiss durch wildlebende Huftiere auf die Baumverjüngung. Schweizerische Zeitschrift Fur Forstwesen, 2019, 170, 125-134.	0.1	3
51	Bedeutung von Marteloskopen für Praxis und Lehre in der Schweiz. Schweizerische Zeitschrift Fur Forstwesen, 2019, 170, 60-68.	0.1	1
52	Climate changeâ€driven extinctions of tree species affect forest functioning more than random extinctions. Diversity and Distributions, 2018, 24, 906-918.	4.1	23
53	Long-term response of forest productivity to climate change is mostly driven by change in tree species composition. Scientific Reports, 2018, 8, 5627.	3.3	133
54	How to kill a tree: empirical mortality models for 18 species and their performance in a dynamic forest model. Ecological Applications, 2018, 28, 522-540.	3.8	56

#	Article	IF	CITATIONS
55	Competition for water in a xeric forest ecosystem – Effects of understory removal on soil micro-climate, growth and physiology of dominant Scots pine trees. Forest Ecology and Management, 2018, 409, 241-249.	3.2	52
56	Global sensitivity analysis of a dynamic vegetation model: Model sensitivity depends on successional time, climate and competitive interactions. Ecological Modelling, 2018, 368, 377-390.	2.5	34
57	Tree growth responses to changing temperatures across space and time: a fine-scale analysis at the treeline in the Swiss Alps. Trees - Structure and Function, 2018, 32, 645-660.	1.9	36
58	Herbaceous competition and browsing may induce arrested succession in central European forests. Journal of Ecology, 2018, 106, 1120-1132.	4.0	21
59	Overstorey–Understorey Interactions Intensify After Drought-Induced Forest Die-Off: Long-Term Effects for Forest Structure and Composition. Ecosystems, 2018, 21, 723-739.	3.4	27
60	Pervasive effects of drought on tree growth across a wide climatic gradient in the temperate forests of the Caucasus. Global Ecology and Biogeography, 2018, 27, 1314-1325.	5.8	34
61	Climate-induced shifts in leaf unfolding and frost risk of European trees and shrubs. Scientific Reports, 2018, 8, 9865.	3.3	74
62	Ecological Factors Influencing Norway Spruce Regeneration on Nurse Logs in a Subalpine Virgin Forest. Forests, 2018, 9, 120.	2.1	12
63	Importance of climate uncertainty for projections of forest ecosystem services. Regional Environmental Change, 2018, 18, 2145-2159.	2.9	12
64	Climate Change in Wildlands: Pioneering Approaches to Science and Management. Mountain Research and Development, 2018, 38, 90.	1.0	0
65	Early-Warning Signals of Individual Tree Mortality Based on Annual Radial Growth. Frontiers in Plant Science, 2018, 9, 1964.	3.6	117
66	Natürliche Baummortalitäin Mitteleuropa: Mortalitäsraten und -muster im Vergleich. Schweizerische Zeitschrift Fur Forstwesen, 2018, 169, 166-174.	0.1	1
67	Accurate modeling of harvesting is key for projecting future forest dynamics: a case study in the Slovenian mountains. Regional Environmental Change, 2017, 17, 49-64.	2.9	34
68	Integrating models across temporal and spatial scales to simulate landscape patterns and dynamics in mountain pasture-woodlands. Landscape Ecology, 2017, 32, 1079-1096.	4.2	7
69	Impacts of business-as-usual management on ecosystem services in European mountain ranges under climate change. Regional Environmental Change, 2017, 17, 3-16.	2.9	23
70	Beta diversity of plants, birds and butterflies is closely associated with climate and habitat structure. Global Ecology and Biogeography, 2017, 26, 898-906.	5.8	82
71	How to predict tree death from inventory data — lessons from a systematic assessment of European tree mortality models. Canadian Journal of Forest Research, 2017, 47, 890-900.	1.7	28
72	Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?. Environmental Research Letters, 2017, 12, 034027.	5.2	142

#	Article	IF	CITATIONS
73	Deadwood in Norway spruce dominated mountain forest reserves is characterized by large dimensions and advanced decomposition stages. Forest Ecology and Management, 2017, 404, 174-183.	3.2	9
74	Amongâ€ŧree variability and feedback effects result in different growth responses to climate change at the upper treeline in the Swiss Alps. Ecology and Evolution, 2017, 7, 7937-7953.	1.9	23
75	The prospects of silver fir (Abies alba Mill.) and Norway spruce (Picea abies (L.) Karst) in mixed mountain forests under various management strategies, climate change and high browsing pressure. European Journal of Forest Research, 2017, 136, 1071-1090.	2.5	27
76	Mountain forest management in a changing world. European Journal of Forest Research, 2017, 136, 981-982.	2.5	11
77	Future ecosystem services from European mountain forests under climate change. Journal of Applied Ecology, 2017, 54, 389-401.	4.0	147
78	From monocultures to mixed-species forests: is tree diversity key for providing ecosystem services at the landscape scale?. Landscape Ecology, 2017, 32, 1499-1516.	4.2	44
79	Long-term effects of drought on tree-ring growth and carbon isotope variability in Scots pine in a dry environment. Tree Physiology, 2017, 37, 1028-1041.	3.1	83
80	A framework for modeling adaptive forest management and decision making under climate change. Ecology and Society, 2017, 22, .	2.3	72
81	A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology and Evolution, 2017, 1, 1285-1291.	7.8	739
82	A synthesis of radial growth patterns preceding tree mortality. Global Change Biology, 2017, 23, 1675-1690.	9.5	394
83	Using a dynamic forest model to predict tree species distributions. Global Ecology and Biogeography, 2016, 25, 347-358.	5.8	32
84	Environmental predictors of species richness in forest landscapes: abiotic factors versus vegetation structure. Journal of Biogeography, 2016, 43, 1080-1090.	3.0	70
85	Towards a common methodology for developing logistic tree mortality models based on ringâ€width data. Ecological Applications, 2016, 26, 1827-1841.	3.8	36
86	Improvement of water and light availability after thinning at a xeric site: which matters more? A dual isotope approach. New Phytologist, 2016, 210, 108-121.	7.3	95
87	Drought and frost contribute to abrupt growth decreases before tree mortality in nine temperate tree species. Forest Ecology and Management, 2016, 382, 51-63.	3.2	76
88	Herbaceous Understorey: An Overlooked Player in Forest Landscape Dynamics?. Ecosystems, 2016, 19, 1240-1254.	3.4	66
89	Quantifying the effects of drought on abrupt growth decreases of major tree species in Switzerland. Ecology and Evolution, 2016, 6, 3555-3570.	1.9	45
90	Forward modeling of tree-ring width improves simulation of forest growth responses to drought. Agricultural and Forest Meteorology, 2016, 221, 13-33.	4.8	48

#	Article	IF	CITATIONS
91	Short―and longâ€ŧerm efficacy of forest thinning to mitigate drought impacts in mountain forests in the European Alps. Ecological Applications, 2015, 25, 1083-1098.	3.8	72
92	The agony of choice: different empirical mortality models lead to sharply different future forest dynamics. Ecological Applications, 2015, 25, 1303-1318.	3.8	41
93	Pattern and process in the largest primeval beech forest of <scp>E</scp> urope (<scp>U</scp> krainian) Tj ETQq1	1_0,78433	14 rgBT /Ove
94	How to successfully publish interdisciplinary research: learning from an Ecology and Society Special Feature. Ecology and Society, 2015, 20, .	2.3	11
95	Gap pattern of the largest primeval beech forest of Europe revealed by remote sensing. Ecosphere, 2015, 6, 1-15.	2.2	57
96	Age-class disequilibrium as an opportunity for adaptive forest management in the Carpathian Mountains, Romania. Regional Environmental Change, 2015, 15, 1557-1568.	2.9	18
97	Browsing regime and growth response of Abies alba saplings planted along light gradients. European Journal of Forest Research, 2015, 134, 75-87.	2.5	19
98	Disentangling the effects of climate, topography, soil and vegetation on stand-scale species richness in temperate forests. Forest Ecology and Management, 2015, 349, 36-44.	3.2	56
99	Models for adaptive forest management. Regional Environmental Change, 2015, 15, 1483-1487.	2.9	20
100	Naturnaher und multifunktionaler Waldbau in Zeiten des Klimawandels – eine Fallstudie. Schweizerische Zeitschrift Fur Forstwesen, 2015, 166, 314-324.	0.1	4
101	Empfindlichkeit typischer Schweizer WaldbestÃ ¤ de auf den Klimawandel. Schweizerische Zeitschrift Fur Forstwesen, 2015, 166, 408-419.	0.1	6
102	Growth-Mortality Relationships in Piñon Pine (Pinus edulis) during Severe Droughts of the Past Century: Shifting Processes in Space and Time. PLoS ONE, 2014, 9, e92770.	2.5	60
103	Vulnerability of uneven-aged forests to storm damage. Forestry, 2014, 87, 525-534.	2.3	72
104	Inter- and transdisciplinary perspective on the integration of ecological processes into ecosystem services analysis in a mountain region. Ecological Processes, 2014, 3, .	3.9	17
105	Using dynamic vegetation models to simulate plant range shifts. Ecography, 2014, 37, 1184-1197.	4.5	89
106	Swiss tree rings reveal warm and wet summers during medieval times. Geophysical Research Letters, 2014, 41, 1732-1737.	4.0	30
107	Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics. Ecology Letters, 2014, 17, 1526-1535.	6.4	163
108	Reduction in browsing intensity may not compensate climate change effects on tree species composition in the Bavarian Forest National Park. Forest Ecology and Management, 2014, 328, 179-192.	3.2	90

#	Article	IF	CITATIONS
109	Site factors are more important than salvage logging for tree regeneration after wind disturbance in Central European forests. Forest Ecology and Management, 2014, 331, 116-128.	3.2	92
110	Growth response of five co-occurring conifers to drought across a wide climatic gradient in Central Europe. Agricultural and Forest Meteorology, 2014, 197, 1-12.	4.8	111
111	The impact of climate change and its uncertainty on carbon storage in Switzerland. Regional Environmental Change, 2014, 14, 1437-1450.	2.9	12
112	Spatial interactions between storm damage and subsequent infestations by the European spruce bark beetle. Forest Ecology and Management, 2014, 318, 167-174.	3.2	80
113	Sensitivity of simulated productivity to soil characteristics and plant water uptake along drought gradients in the Swiss Alps. Ecological Modelling, 2014, 282, 25-34.	2.5	5
114	Light availability and ungulate browsing determine growth, height and mortality of Abies alba saplings. Forest Ecology and Management, 2014, 318, 359-369.	3.2	27
115	Forschung zu Wald und Klimawandel in Mitteleuropa: eine Werkschau. Schweizerische Zeitschrift Fur Forstwesen, 2014, 165, 27-36.	0.1	1
116	Waldbauliche Massnahmen für das Auerhuhn im Sonderwaldreservat Amden: ein erstes Fazit. Schweizerische Zeitschrift Fur Forstwesen, 2014, 165, 87-96.	0.1	0
117	Invasive Neobiota im Wald: Konzepte und wissenschaftliche Grundlagen. Schweizerische Zeitschrift Fur Forstwesen, 2014, 165, 124-131.	0.1	1
118	Welche Faktoren bestimmen den Erfolg der Moderholzverjüngung im Fichtenurwald ScatlÔ?. Schweizerische Zeitschrift Fur Forstwesen, 2014, 165, 339-347.	0.1	0
119	Sensitivity of ecosystem goods and services projections of a forest landscape model to initialization data. Landscape Ecology, 2013, 28, 1337-1352.	4.2	22
120	Preface: integrating historical ecology and ecological modeling. Landscape Ecology, 2013, 28, 785-787.	4.2	15
121	Impacts of changing climate and land use on vegetation dynamics in a Mediterranean ecosystem: insights from paleoecology and dynamic modeling. Landscape Ecology, 2013, 28, 819-833.	4.2	65
122	Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Global Change Biology, 2013, 19, 3184-3199.	9.5	268
123	Reduction of stand density increases drought resistance in xeric Scots pine forests. Forest Ecology and Management, 2013, 310, 827-835.	3.2	131
124	Effects of salvage logging and sanitation felling on bark beetle (Ips typographus L.) infestations. Forest Ecology and Management, 2013, 305, 273-281.	3.2	100
125	Key factors affecting the future provision of tree-based forest ecosystem goods and services. Climatic Change, 2013, 118, 579-593.	3.6	20
126	Does increment coring enhance tree decay? New insights from tomography assessments. Canadian Journal of Forest Research, 2013, 43, 711-718.	1.7	19

#	Article	IF	CITATIONS
127	Drought response and changing mean sensitivity of European beech close to the dry distribution limit. Trees - Structure and Function, 2013, 27, 171-181.	1.9	73
128	Timing, light availability and vigour determine the response of Abies alba saplings to leader shoot browsing. European Journal of Forest Research, 2013, 132, 47-60.	2.5	18
129	A sinkâ€limited growth model improves biomass estimation along boreal and alpine tree lines. Global Ecology and Biogeography, 2013, 22, 924-932.	5.8	45
130	Towards non-destructive estimation of tree age. Forest Ecology and Management, 2013, 304, 286-295.	3.2	11
131	Updating beliefs and combining evidence in adaptive forest management under climate change: A case study of Norway spruce (Picea abies L. Karst) in the Black Forest, Germany. Journal of Environmental Management, 2013, 122, 56-64.	7.8	31
132	Browsing regime and growth response of naturally regenerated Abies alba saplings along light gradients. Forest Ecology and Management, 2013, 310, 393-404.	3.2	28
133	Crossâ€scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. Ecological Monographs, 2013, 83, 383-402.	5.4	156
134	A predictive framework to assess spatioâ€ŧemporal variability of infestations by the European spruce bark beetle. Ecography, 2013, 36, 1208-1217.	4.5	61
135	Impacts of salvage-logging on the status of deadwood after windthrow in Swiss forests. European Journal of Forest Research, 2013, 132, 231-240.	2.5	38
136	Estimating the age–diameter relationship of oak species in Switzerland using nonlinear mixed-effects models. European Journal of Forest Research, 2013, 132, 751-764.	2.5	18
137	Sustainable Land-use Practices in European Mountain Regions under Global Change: an Integrated Research Approach. Ecology and Society, 2013, 18, .	2.3	14
138	Sustainable Land Use in Mountain Regions Under Global Change: Synthesis Across Scales and Disciplines. Ecology and Society, 2013, 18, .	2.3	42
139	Quantification of plant dispersal ability within and beyond a calcareous grassland. Journal of Vegetation Science, 2013, 24, 1010-1019.	2.2	33
140	A 2°C warmer world is not safe for ecosystem services in the <scp>E</scp> uropean <scp>A</scp> lps. Global Change Biology, 2013, 19, 1827-1840.	9.5	132
141	Disentangling Biodiversity and Climatic Determinants of Wood Production. PLoS ONE, 2013, 8, e53530.	2.5	202
142	Eichenrückgang in Schweizer Naturwaldreservaten. Schweizerische Zeitschrift Fur Forstwesen, 2013, 164, 328-336.	0.1	0
143	Growth enhancement of Picea abies trees under long-term, low-dose N addition is due to morphological more than to physiological changes. Tree Physiology, 2012, 32, 1471-1481.	3.1	28
144	Sind Naturwaldreservate naturnäer als der Schweizer Wald?. Schweizerische Zeitschrift Fur Forstwesen, 2012, 163, 210-221.	0.1	4

HARALD BUGMANN

#	Article	IF	CITATIONS
145	Adaptive management for competing forest goods and services under climate change. Ecological Applications, 2012, 22, 2065-2077.	3.8	101
146	Long-term tracing of whole catchment 15N additions in a mountain spruce forest: measurements and simulations with the TRACE model. Trees - Structure and Function, 2012, 26, 1683-1702.	1.9	15
147	Human impacts on fire occurrence: a case study of hundred years of forest fires in a dry alpine valley in Switzerland. Regional Environmental Change, 2012, 12, 935-949.	2.9	60
148	Do small-grain processes matter for landscape scale questions? Sensitivity of a forest landscape model to the formulation of tree growth rate. Landscape Ecology, 2012, 27, 697-711.	4.2	31
149	Enhancing gap model accuracy by modeling dynamic height growth and dynamic maximum tree height. Ecological Modelling, 2012, 232, 133-143.	2.5	41
150	Tree mortality in dynamic vegetation models $\hat{a} \in$ A key feature for accurately simulating forest properties. Ecological Modelling, 2012, 243, 101-111.	2.5	40
151	Fifty years of natural succession in Swiss forest reserves: changes in stand structure and mortality rates of oak and beech. Journal of Vegetation Science, 2012, 23, 892-905.	2.2	53
152	The relative importance of land use and climatic change in Alpine catchments. Climatic Change, 2012, 111, 279-300.	3.6	21
153	Successional pathways in Swiss mountain forest reserves. European Journal of Forest Research, 2012, 131, 503-518.	2.5	8
154	Waldausdehnung in zwei Regionen des Schweizer Berggebiets: eine integrative Analyse. Schweizerische Zeitschrift Fur Forstwesen, 2012, 163, 502-511.	0.1	1
155	Wald und Klimawandel in der inneralpinen Trockenregion Visp. Schweizerische Zeitschrift Fur Forstwesen, 2012, 163, 481-492.	0.1	3
156	Long-term effects of increment coring on Norway spruce mortality. Canadian Journal of Forest Research, 2011, 41, 2326-2336.	1.7	17
157	Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland. Forest Ecology and Management, 2011, 261, 2188-2199.	3.2	83
158	Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecology Letters, 2011, 14, 1211-1219.	6.4	372
159	Getting a virtual forester fit for the challenge of climatic change. Journal of Applied Ecology, 2011, 48, 1174-1186.	4.0	37
160	Did soil development limit spruce (Picea abies) expansion in the Central Alps during the Holocene? Testing a palaeobotanical hypothesis with a dynamic landscape model. Journal of Biogeography, 2011, 38, 933-949.	3.0	81
161	Modelling natural disturbances in forest ecosystems: a review. Ecological Modelling, 2011, 222, 903-924.	2.5	318
162	Ungulate herbivory modifies the effects of climate change on mountain forests. Climatic Change, 2011, 109, 647-669.	3.6	46

#	Article	IF	CITATIONS
163	Will the CO2 fertilization effect in forests be offset by reduced tree longevity?. Oecologia, 2011, 165, 533-544.	2.0	93
164	Models for supporting forest management in a changing environment. Forest Systems, 2011, 3, 8.	0.3	43
165	Modellierung des Einflusses von Wildverbiss auf die Schutzwaldentwicklung an der Rigi-Nordlehne. Schweizerische Zeitschrift Fur Forstwesen, 2011, 162, 355-363.	0.1	0
166	Temperature response functions introduce high uncertainty in modelled carbon stocks in cold temperature regimes. Biogeosciences, 2010, 7, 3669-3684.	3.3	19
167	Debris-flow activity along a torrent in the Swiss Alps: Minimum frequency of events and implications for forest dynamics. Dendrochronologia, 2010, 28, 215-223.	2.2	18
168	A 350 year drought reconstruction from Alpine tree ring stable isotopes. Global Biogeochemical Cycles, 2010, 24, .	4.9	108
169	Environmental determinants of lightning- v. human-induced forest fire ignitions differ in a temperate mountain region of Switzerland. International Journal of Wildland Fire, 2010, 19, 541.	2.4	63
170	Windwurf und BorkenkĀferepidemien im Alptal nach Vivian und Lothar Windthrow and bark beetle attacks in the Alptal after the wind storms Vivian and Lothar. Schweizerische Zeitschrift Fur Forstwesen, 2010, 161, 36-44.	0.1	2
171	Beziehungen zwischen Baum- und Krautschicht in BuchenmischwĤlern Relations between tree and herb layer in mixed beech forests. Schweizerische Zeitschrift Fur Forstwesen, 2010, 161, 147-156.	0.1	1
172	Le régime des incendies de forêt en Valais: influences climatiques et anthropiques Forest fire regimes in Valais: climatic and human influences. Schweizerische Zeitschrift Fur Forstwesen, 2010, 161, 442-449.	0.1	1
173	Waldbrandmodellierung - Möglichkeiten und Grenzen Forest fire modeling - limits and possibilities. Schweizerische Zeitschrift Fur Forstwesen, 2010, 161, 433-441.	0.1	4
174	Gaining local accuracy while not losing generality— extending the range of gap model applications. Canadian Journal of Forest Research, 2009, 39, 1092-1107.	1.7	34
175	Potentials and limitations of using large-scale forest inventory data for evaluating forest succession models. Ecological Modelling, 2009, 220, 133-147.	2.5	28
176	Predicting long-term development of abandoned subalpine conifer forests in the Swiss National Park. Ecological Modelling, 2009, 220, 1578-1585.	2.5	5
177	Quantifying disturbance effects on vegetation carbon pools in mountain forests based on historical data. Regional Environmental Change, 2009, 9, 121-130.	2.9	24
178	Linking Forest Fire Regimes and Climate—A Historical Analysis in a Dry Inner Alpine Valley. Ecosystems, 2009, 12, 73-86.	3.4	86
179	Summer temperature dependency of larch budmoth outbreaks revealed by Alpine tree-ring isotope chronologies. Oecologia, 2009, 160, 353-365.	2.0	52
180	Hutchinson revisited: Patterns of density regulation and the coexistence of strong competitors. Journal of Theoretical Biology, 2009, 259, 109-117.	1.7	12

#	Article	IF	CITATIONS
181	Disappearing refuges in time and space: how environmental change threatens species coexistence. Theoretical Ecology, 2009, 2, 217-227.	1.0	7
182	Response of broadleaved evergreen Mediterranean forest vegetation to fire disturbance during the Holocene: insights from the periâ€Adriatic region. Journal of Biogeography, 2009, 36, 314-326.	3.0	71
183	Long-term effects of ungulate browsing on forest composition and structure. Forest Ecology and Management, 2009, 258, S44-S55.	3.2	61
184	Alien species in a warmer world: risks and opportunities. Trends in Ecology and Evolution, 2009, 24, 686-693.	8.7	1,031
185	Forty years of natural dynamics in Swiss beech forests: structure, composition, and the influence of former management. Ecological Applications, 2009, 19, 1920-1934.	3.8	74
186	Standortkartierung im Lehr- und Forschungswald der ETH in Sedrun Site mapping in the ETH Research Forest of Sedrun. Schweizerische Zeitschrift Fur Forstwesen, 2009, 160, 27-36.	0.1	0
187	Predicting tree mortality from growth data: how virtual ecologists can help real ecologists. Journal of Ecology, 2008, 96, 174-187.	4.0	8
188	Ungulate browsing in winter reduces the growth of Fraxinus and Acer saplings in subsequent unbrowsed years. Plant Ecology, 2008, 198, 121-134.	1.6	20
189	Growth–mortality relationships as indicators of lifeâ€history strategies: a comparison of nine tree species in unmanaged European forests. Oikos, 2008, 117, 815-828.	2.7	45
190	Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the 20th century. Global Change Biology, 2008, 14, 1581-1591.	9.5	155
191	Sensitivity of stand dynamics to grazing in mixed Pinus sylvestris and Quercus pubescens forests: A modelling study. Ecological Modelling, 2008, 210, 301-311.	2.5	23
192	Using a retrospective dynamic competition index to reconstruct forest succession. Forest Ecology and Management, 2008, 254, 96-106.	3.2	80
193	Klimawandel als Prüfstein für die Waldbewirtschaftung Climate change as a touchstone for forest management. Schweizerische Zeitschrift Fur Forstwesen, 2008, 159, 316-325.	0.1	9
194	Die Kastanie im Engadin – oder was halten Baumarten von modellierten Potenzialgebieten? Chestnut in the Engadine – what do tree species think about model predictions?. Schweizerische Zeitschrift Fur Forstwesen, 2008, 159, 326-335.	0.1	7
195	Klimawandel als waldbauliche Herausforderung Climate change as a challenge for silviculture. Schweizerische Zeitschrift Fur Forstwesen, 2008, 159, 362-373.	0.1	25
196	Sinn und Unsinn der Anrechnung von Waldsenken im Kyoto-Protokoll (Essay) Sense and nonsense of using forests as carbon sinks in the Kyoto Protocol (essay). Schweizerische Zeitschrift Fur Forstwesen, 2008, 159, 267-272.	0.1	0
197	Simulation de la structure optimale des hêtraies de protection contre les chutes de pierres Simulation of the optimal structure of beech forests protecting against rockfall. Schweizerische Zeitschrift Fur Forstwesen, 2008, 159, 396-405.	0.1	0
198	Modeling the Biophysical Impacts of Global Change in Mountain Biosphere Reserves. Mountain Research and Development, 2007, 27, 66-77.	1.0	16

#	Article	IF	CITATIONS
199	Wind disturbance in mountain forests: Simulating the impact of management strategies, seed supply, and ungulate browsing on forest succession. Forest Ecology and Management, 2007, 242, 142-154.	3.2	48
200	Understanding the low-temperature limitations to forest growth through calibration of a forest dynamics model with tree-ring data. Forest Ecology and Management, 2007, 246, 251-263.	3.2	44
201	Water and carbon fluxes of European ecosystems: an evaluation of the ecohydrological model RHESSys. Hydrological Processes, 2007, 21, 3328-3339.	2.6	45
202	Predicting tree death for Fagus sylvatica and Abies alba using permanent plot data. Journal of Vegetation Science, 2007, 18, 525-534.	2.2	41
203	Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an innerâ€Alpine dry valley. Journal of Vegetation Science, 2007, 18, 777-792.	2.2	111
204	Forest and Landscape Structure as Predictors of Capercaillie Occurrence. Journal of Wildlife Management, 2007, 71, 356-365.	1.8	27
205	Sensitivity of carbon cycling in the European Alps to changes of climate and land cover. Climatic Change, 2007, 85, 195-212.	3.6	18
206	The influence of changes in climate and land-use on regeneration dynamics of Norway spruce at the treeline in the Swiss Alps. Silva Fennica, 2007, 41, .	1.3	50
207	Predicting tree death for Fagus sylvatica and Abies alba using permanent plot data. Journal of Vegetation Science, 2007, 18, 525.	2.2	1
208	Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner-Alpine dry valley. Journal of Vegetation Science, 2007, 18, 777.	2.2	3
209	On the generality of habitat distribution models: a case study of capercaillie in three Swiss regions. Ecography, 2006, 29, 319-328.	4.5	45
210	Forest regeneration after disturbance: A modelling study for the Swiss Alps. Forest Ecology and Management, 2006, 222, 123-136.	3.2	38
211	Growth of Norway spruce (Picea abies L.) saplings in subalpine forests in Switzerland: Does spring climate matter?. Forest Ecology and Management, 2006, 228, 19-32.	3.2	28
212	Effect of forest management on future carbon pools and fluxes: A model comparison. Forest Ecology and Management, 2006, 237, 65-82.	3.2	44
213	Linking palaeoenvironmental data and models to understand the past and to predict the future. Trends in Ecology and Evolution, 2006, 21, 696-704.	8.7	116
214	Modelling of large herbivore–vegetation interactions in a landscape context. , 2006, , 348-382.		14
215	Key Issues for Mountain Areas - Edited by M.F. Price, L. Jansky and A.A. Iatsenia. Geographical Research, 2006, 44, 227-228.	1.8	0
216	A model-based reconstruction of Holocene treeline dynamics in the Central Swiss Alps. Journal of Ecology, 2006, 94, 206-216.	4.0	97

#	Article	IF	CITATIONS
217	The relative importance of climatic effects, wildfires and management for future forest landscape dynamics in the Swiss Alps. Global Change Biology, 2006, 12, 1435-1450.	9.5	165
218	Incidence and distribution of Heterobasidion and Armillaria and their influence on canopy gap formation in unmanaged mountain pine forests in the Swiss Alps. European Journal of Plant Pathology, 2006, 116, 85-93.	1.7	33
219	Modeling the Impact of Climate and Vegetation on Fire Regimes in Mountain Landscapes. Landscape Ecology, 2006, 21, 539-554.	4.2	82
220	Drought as an Inciting Mortality Factor in Scots Pine Stands of the Valais, Switzerland. Ecosystems, 2006, 9, 330-343.	3.4	429
221	Analyzing the carbon dynamics of central European forests: comparison of Biome-BGC simulations with measurements. Regional Environmental Change, 2006, 6, 167-180.	2.9	28
222	Evaluation of the forest growth model SILVA along an elevational gradient in Switzerland. European Journal of Forest Research, 2006, 125, 43-55.	2.5	25
223	Predicting tree regeneration in Picea abies snag stands. European Journal of Forest Research, 2006, 125, 163-179.	2.5	16
224	Adapting a growth equation to model tree regeneration in mountain forests. European Journal of Forest Research, 2006, 126, 49-57.	2.5	20
225	Improving the establishment submodel of a forest patch model to assess the long-term protective effect of mountain forests. European Journal of Forest Research, 2006, 126, 131-145.	2.5	23
226	Optimisation of tree mortality models based on growth patterns. Ecological Modelling, 2006, 197, 196-206.	2.5	18
227	Pathways and dynamics of 15NO3â^ and 15NH4+ applied in a mountain Picea abies forest and in a nearby meadow in central Switzerland. Soil Biology and Biochemistry, 2006, 38, 1645-1657.	8.8	56
228	Impact of root-rot pathogens on forest succession in unmanaged Pinus mugo stands in the Central Alps. Canadian Journal of Forest Research, 2006, 36, 2666-2674.	1.7	30
229	Growth response of Norway spruce saplings in two forest gaps in the Swiss Alps to artificial browsing, infection with black snow mold, and competition by ground vegetation. Canadian Journal of Forest Research, 2006, 36, 2782-2793.	1.7	24
230	Die Entwicklung der WÄkeler auf der SchwÄgalp im 20. Jahrhundert und ihre Bedeutung fļr den Lebensraum des Auerhuhns (Tetrao urogallus L.) Forest development on the SchwÄgalp in the 20th century and its significance for the habitat of capercaillie (Tetrao urogallus L.) (reviewed paper). Schweizerische Zeitschrift Fur Forstwesen. 2006. 157. 135-146.	0.1	1
231	Arolle et climat océanique: l'importance des facteurs micro-stationnels Swiss stone pine and oceanic climate: the importance of microsites. Schweizerische Zeitschrift Fur Forstwesen, 2006, 157, 196-207.	0.1	1
232	Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Global Change Biology, 2005, 11, 2211-2233.	9.5	246
233	Simulating structural forest patterns with a forest gap model: a model evaluation. Ecological Modelling, 2005, 181, 161-172.	2.5	46
234	Modeling the interacting effects of browsing and shading on mountain forest tree regeneration (Picea abies). Ecological Modelling, 2005, 185, 213-230.	2.5	30

#	Article	IF	CITATIONS
235	Predicting decay and ground vegetation development in Picea abies snag stands. Plant Ecology, 2005, 179, 247-268.	1.6	13
236	The Importance of Spatial Scale in Habitat Models: Capercaillie in the Swiss Alps. Landscape Ecology, 2005, 20, 703-717.	4.2	166
237	Flow of Deposited Inorganic N in Two Gleysol-dominated Mountain Catchments Traced with 15NO3â^' and 15NH4+. Biogeochemistry, 2005, 76, 453-475.	3.5	39
238	Ecosystem Service Supply and Vulnerability to Global Change in Europe. Science, 2005, 310, 1333-1337.	12.6	1,355
239	Evaluation of the growth function of an empirical forest scenario model. Forest Ecology and Management, 2005, 204, 53-68.	3.2	37
240	Effect of microsites, logs and ungulate browsing on Picea abies regeneration in a mountain forest. Forest Ecology and Management, 2005, 205, 251-265.	3.2	76
241	Using a forest patch model to predict the dynamics of stand structure in Swiss mountain forests. Forest Ecology and Management, 2005, 205, 149-167.	3.2	32
242	Global change impacts on hydrological processes in Alpine catchments. Water Resources Research, 2005, 41, .	4.2	109
243	Assessing the performance of theoretical and empirical tree mortality models using tree-ring series of Norway spruce. Ecological Modelling, 2004, 174, 225-239.	2.5	39
244	Improving the formulation of tree growth and succession in a spatially explicit landscape model. Ecological Modelling, 2004, 180, 175-194.	2.5	125
245	Detecting successional changes in long-term empirical data from subalpine conifer forests. Plant Ecology, 2004, 172, 95-105.	1.6	20
246	Growth patterns as indicators of impending tree death in silver fir. Forest Ecology and Management, 2004, 199, 183-190.	3.2	95
247	PREDICTING THE TIME OF TREE DEATH USING DENDROCHRONOLOGICAL DATA. , 2004, 14, 902-914.		141
248	Predicting Understorey Vegetation Cover from Overstorey Attributes in Two Temperate Mountain Forests. European Journal of Forest Research, 2003, 122, 273-286.	0.3	17
249	Forest-ungulate interactions: monitoring, modeling and management. Journal for Nature Conservation, 2003, 10, 193-201.	1.8	14
250	Forest dynamics and ungulate herbivory: from leaf to landscape. Forest Ecology and Management, 2003, 181, 1-12.	3.2	107
251	Growth-dependent tree mortality models based on tree rings. Canadian Journal of Forest Research, 2003, 33, 210-221.	1.7	143
252	Decay of Picea abies snag stands on steep mountain slopes. Forestry Chronicle, 2003, 79, 247-252.	0.6	29

HARALD BUGMANN

#	Article	IF	CITATIONS
253	A comparative analysis of forest dynamics in the Swiss Alps and the Colorado Front Range. Forest Ecology and Management, 2001, 145, 43-55.	3.2	25
254	Title is missing!. Climatic Change, 2001, 51, 251-257.	3.6	7
255	Title is missing!. Climatic Change, 2001, 51, 249-250.	3.6	17
256	A Review of Forest Gap Models. , 2001, 51, 259-305.		592
257	Comparing the Performance of Forest gap Models in North America. Climatic Change, 2001, 51, 349-388.	3.6	45
258	Title is missing!. Climatic Change, 2001, 51, 389-413.	3.6	33
259	Title is missing!. Climatic Change, 2001, 51, 541-557.	3.6	31
260	Title is missing!. Climatic Change, 2001, 51, 307-347.	3.6	67
261	Website of the new Mountain Research Initiative (MRI). Mountain Research and Development, 2001, 21, 198-198.	1.0	1
262	Vom Kleinen zum Grossen in der langfristigen Walddynamik: Die Bedeutung verschiedener Massstabsebenen Moving from the small to large in longterm forest dynamics: the importance of scaling issues. Schweizerische Zeitschrift Fur Forstwesen, 2001, 152, 193-198.	0.1	1
263	Scaling Issues in Forest Succession Modelling. Climatic Change, 2000, 44, 265-289.	3.6	47
264	Impacts of interannual climate variability on past and future forest composition. Regional Environmental Change, 2000, 1, 112-125.	2.9	53
265	Comparing models for tree distributions: concept, structures, and behavior. Ecological Modelling, 2000, 134, 89-102.	2.5	46
266	Anthropogene KlimaverÄ ¤ derung, Sukzessionsprozesse und forstwirtschaftliche Optionen Anthropogenic Climate Change, Successional Processes and Forest Management Options. Schweizerische Zeitschrift Fur Forstwesen, 1999, 150, 275-287.	0.1	10
267	Improving the behaviour of forest gap models along drought gradients. Forest Ecology and Management, 1998, 103, 247-263.	3.2	98
268	An efficient method for estimating the steady-state species composition of forest gap models. Canadian Journal of Forest Research, 1997, 27, 551-556.	1.7	18
269	Regional impacts of climatic change on forests in the state of Brandenburg, Germany. Agricultural and Forest Meteorology, 1997, 84, 123-135.	4.8	57
270	Gap models, forest dynamics and the response of vegetation to climate change. , 1997, , 441-453.		7

#	Article	IF	CITATIONS
271	Sensitivity of forests in the European Alps to future climatic change. Climate Research, 1997, 8, 35-44.	1.1	59
272	Model convergence and state variable update in forest gap models. Ecological Modelling, 1996, 89, 197-208.	2.5	43
273	Clobal vegetation models: incorporating transient changes to structure and composition. Journal of Vegetation Science, 1996, 7, 321-328.	2.2	44
274	Functional types of trees in temperate and boreal forests: classification and testing. Journal of Vegetation Science, 1996, 7, 359-370.	2.2	71
275	Simulating forest dynamics in a complex topography using gridded climatic data. Climatic Change, 1996, 34, 201.	3.6	20
276	A Simplified Forest Model to Study Species Composition Along Climate Gradients. Ecology, 1996, 77, 2055-2074.	3.2	252
277	How physics and biology matter in forest gap models. Climatic Change, 1995, 29, 251-257.	3.6	29
278	Sensitivity of a forest ecosystem model to climate parametrization schemes. Environmental Pollution, 1995, 87, 267-282.	7.5	68
279	Forests in a greenhouse atmosphere: predicting the unpredictable?. , 0, , 359-380.		9
280	COMPARING THE BEHAVIOUR OF MOUNTAINOUS FOREST SUCCESSION MODELS IN A CHANGING CLIMATE. , 0, , 204-219.		23