Peng Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/920749/publications.pdf

Version: 2024-02-01

		159585	1	144013
56	5,332	30		57
papers	citations	h-index		g-index
58	58	58		6248
all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	Effects of cascade dam on the distribution of heavy metals and biogenic elements in sediments at the watershed scale, Southwest China. Environmental Science and Pollution Research, 2022, 29, 8970-8979.	5.3	3
2	Formation, aggregation, and transport of NOM–Cr(<scp>iii</scp>) colloids in aquatic environments. Environmental Science: Nano, 2022, 9, 1133-1145.	4.3	10
3	CD8+ TÂcells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell, 2022, 40, 365-378.e6.	16.8	250
4	The Chemical Oxidation and Immobilization of Arsenic and Antimony in Simulated AMD in Karst Areas. Bulletin of Environmental Contamination and Toxicology, 2022, 108, 541-548.	2.7	2
5	Organic phosphorus regeneration enhanced since eutrophication occurred in the sub-deep reservoir. Environmental Pollution, 2022, 306, 119350.	7.5	12
6	Experimental and modeling evidence of hydroxyl radical production in iron electrocoagulation as a new mechanism for contaminant transformation in bicarbonate electrolyte. Water Research, 2022, 220, 118662.	11.3	9
7	Enhanced arsenic removal from water by mass re-equilibrium: kinetics and performance evaluation in a binary-adsorbent system. Water Research, 2021, 190, 116676.	11.3	13
8	Loss of Optineurin Drives Cancer Immune Evasion via Palmitoylation-Dependent IFNGR1 Lysosomal Sorting and Degradation. Cancer Discovery, 2021, 11, 1826-1843.	9.4	42
9	The ubiquitin ligase MDM2 sustains STAT5 stability to control T cell-mediated antitumor immunity. Nature Immunology, 2021, 22, 460-470.	14.5	50
10	Conductive property of secondary minerals triggered $Cr(VI)$ bioreduction by dissimilatory iron reducing bacteria. Environmental Pollution, 2021, 286, 117227 .	7.5	16
11	Enhanced sequestration of tetracycline by Mn(II) encapsulated mesoporous silica nanoparticles: Synergistic sorption and mechanism. Chemosphere, 2021, 284, 131334.	8.2	15
12	Enhanced Catalytic Ozonation for Eliminating CH ₃ SH via Graphene-Supported Positively Charged Atomic Pt Undergoing Pt ²⁺ /Pt ⁴⁺ Redox Cycle. Environmental Science & Envi	10.0	47
13	Watershed-scale distributions of heavy metals in the hyporheic zones of a heavily polluted Maozhou River watershed, southern China. Chemosphere, 2020, 239, 124773.	8.2	15
14	RNA-binding motif protein 10 induces apoptosis and suppresses proliferation by activating p53. Oncogene, 2020, 39, 1031-1040.	5.9	30
15	Immobilization of Cr(VI) on engineered silicate nanoparticles: Microscopic mechanisms and site energy distribution. Journal of Hazardous Materials, 2020, 383, 121145.	12.4	18
16	Co-targeting p53-R249S and CDK4 synergistically suppresses survival of hepatocellular carcinoma cells. Cancer Biology and Therapy, 2020, 21, 269-277.	3.4	10
17	Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature, 2020, 585, 277-282.	27.8	280
18	Singleâ€Atom Cu Catalysts for Enhanced Electrocatalytic Nitrate Reduction with Significant Alleviation of Nitrite Production. Small, 2020, 16, e2004526.	10.0	188

#	Article	IF	Citations
19	Reduced NOM triggered rapid Cr(VI) reduction and formation of NOM-Cr(III) colloids in anoxic environments. Water Research, 2020, 181, 115923.	11.3	56
20	Formation and Transport of Cr(III)-NOM-Fe Colloids upon Reaction of Cr(VI) with NOM-Fe(II) Colloids at Anoxic–Oxic Interfaces. Environmental Science & Environmental Scienc	10.0	73
21	Crotonylation at serine 46 impairs p53 activity. Biochemical and Biophysical Research Communications, 2020, 524, 730-735.	2.1	19
22	Radiotherapy and Immunotherapy Promote Tumoral Lipid Oxidation and Ferroptosis via Synergistic Repression of SLC7A11. Cancer Discovery, 2019, 9, 1673-1685.	9.4	566
23	Impact of Divalent Cations on Dark Production of Hydroxyl Radicals from Oxygenation of Reduced Humic Acids at Anoxic–Oxic Interfaces. ACS Earth and Space Chemistry, 2019, 3, 484-494.	2.7	19
24	Transport and retention of Shewanella oneidensis strain MR1 in water-saturated porous media with different grain-surface properties. Chemosphere, 2019, 233, 57-66.	8.2	11
25	CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature, 2019, 569, 270-274.	27.8	1,528
26	Extensive dark production of hydroxyl radicals from oxygenation of polluted river sediments. Chemical Engineering Journal, 2019, 368, 700-709.	12.7	60
27	Elucidating the Role of Sulfide on the Stability of Ferrihydrite Colloids under Anoxic Conditions. Environmental Science & Environmental Science & Env	10.0	31
28	Phosphorus removal and recovery from water with macroporous bead adsorbent constituted of alginate-Zr4+ and PNIPAM-interpenetrated networks. International Journal of Biological Macromolecules, 2019, 126, 1133-1144.	7.5	65
29	Formation and stability of NOM-Mn(III) colloids in aquatic environments. Water Research, 2019, 149, 190-201.	11.3	64
30	It takes a team: a gain-of-function story of p53-R249S. Journal of Molecular Cell Biology, 2019, 11, 277-283.	3.3	27
31	Real-time evaluation of natural organic matter deposition processes onto model environmental surfaces. Water Research, 2018, 129, 231-239.	11.3	26
32	SPIN1 promotes tumorigenesis by blocking the uL18 (universal large ribosomal subunit protein) Tj ETQq0 0 0 rgE	BT Overloo	ck <u>10</u> Tf 50 2
33	Effect of reduced humic acid on the transport of ferrihydrite nanoparticles under anoxic conditions. Water Research, 2017, 109, 347-357.	11.3	61
34	Effect of Humic Acid on the Removal of Chromium(VI) and the Production of Solids in Iron Electrocoagulation. Environmental Science & Electrocoagulation.	10.0	95
35	Graphene oxides in water: assessing stability as a function of material and natural organic matter properties. Environmental Science: Nano, 2017, 4, 1484-1493.	4.3	65
36	Iron-Anode Enhanced Sand Filter for Arsenic Removal from Tube Well Water. Environmental Science & Enchnology, 2017, 51, 889-896.	10.0	33

#	Article	IF	Citations
37	Production of Hydroxyl radicals from oxygenation of simulated AMD due to CaCO3-induced pH increase. Water Research, 2017, 111, 118-126.	11.3	40
38	Formation, Aggregation, and Deposition Dynamics of NOM-Iron Colloids at Anoxic–Oxic Interfaces. Environmental Science & Env	10.0	105
39	Mutant p53 Gains Its Function via c-Myc Activation upon CDK4 Phosphorylation at Serine 249 and Consequent PIN1 Binding. Molecular Cell, 2017, 68, 1134-1146.e6.	9.7	73
40	Cancer-mutated ribosome protein L22 (RPL22/eL22) suppresses cancer cell survival by blocking p53-MDM2 circuit. Oncotarget, 2017, 8, 90651-90661.	1.8	37
41	Palmitoylated SCP1 is targeted to the plasma membrane and negatively regulates angiogenesis. ELife, 2017, 6, .	6.0	15
42	Pleckstrin homology domain-containing protein PHLDB3 supports cancer growth via a negative feedback loop involving p53. Nature Communications, 2016, 7, 13755.	12.8	34
43	Oxidizing Impact Induced by Mackinawite (FeS) Nanoparticles at Oxic Conditions due to Production of Hydroxyl Radicals. Environmental Science & Environ	10.0	168
44	Impact of Redox Reactions on Colloid Transport in Saturated Porous Media: An Example of Ferrihydrite Colloids Transport in the Presence of Sulfide. Environmental Science & Examp; Technology, 2016, 50, 10968-10977.	10.0	31
45	Effects of ionic strength and cationic type on humic acid facilitated transport of tetracycline in porous media. Chemical Engineering Journal, 2016, 284, 389-394.	12.7	65
46	Nerve growth factor receptor negates the tumor suppressor p53 as a feedback regulator. ELife, 2016, 5,	6.0	62
47	Inactivation of oncogenic cAMP-specific phosphodiesterase 4D by miR-139-5p in response to p53 activation. ELife, 2016, 5, .	6.0	29
48	Insights into the Role of Humic Acid on Pd-catalytic Electro-Fenton Transformation of Toluene in Groundwater. Scientific Reports, 2015, 5, 9239.	3.3	9
49	Pd-catalytic hydrodechlorination of chlorinated hydrocarbons in groundwater using H2 produced by a dual-anode system. Water Research, 2015, 86, 74-81.	11.3	9
50	Ribosomal proteins: functions beyond the ribosome. Journal of Molecular Cell Biology, 2015, 7, 92-104.	3.3	522
51	Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation. Journal of Contaminant Hydrology, 2014, 164, 299-307.	3.3	28
52	Ribosomal Protein S14 Negatively Regulates c-Myc Activity. Journal of Biological Chemistry, 2013, 288, 21793-21801.	3.4	68
53	Adsorption of nitrogen-heterocyclic compounds on bamboo charcoal: Kinetics, thermodynamics, and microwave regeneration. Journal of Colloid and Interface Science, 2013, 390, 189-195.	9.4	85
54	Regulation of Electrochemically Generated Ferrous Ions from an Iron Cathode for Pd-Catalytic Transformation of MTBE in Groundwater. Environmental Science & Environmental Science & 2013, 47, 7918-7926.	10.0	36

PENG LIAO

#	Article	IF	CITATION
55	Mechanistic aspects of nitrogen-heterocyclic compound adsorption on bamboo charcoal. Journal of Colloid and Interface Science, 2012, 382, 74-81.	9.4	42
56	Cloning and expression of a novel human gene, Isl-2, encoded a LIM-homeodomain protein. Molecular Biology Reports, 2007, 34, 19-26.	2.3	8