
Michael I Newton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9207156/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Progess in superhydrophobic surface development. Soft Matter, 2008, 4, 224-240.	2.7	1,447
2	An introduction to superhydrophobicity. Advances in Colloid and Interface Science, 2010, 161, 124-138.	14.7	530
3	Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces. Advanced Materials, 2004, 16, 1929-1932.	21.0	488
4	Intrinsically Superhydrophobic Organosilica Solâ^'Gel Foams. Langmuir, 2003, 19, 5626-5631.	3.5	410
5	Analysis of Droplet Evaporation on a Superhydrophobic Surface. Langmuir, 2005, 21, 11053-11060.	3.5	361
6	Contact-Angle Hysteresis on Super-Hydrophobic Surfaces. Langmuir, 2004, 20, 10146-10149.	3.5	329
7	Drop Evaporation on Solid Surfaces:Â Constant Contact Angle Mode. Langmuir, 2002, 18, 2636-2641.	3.5	320
8	Liquid marbles: principles and applications. Soft Matter, 2011, 7, 5473.	2.7	293
9	Wetting and Wetting Transitions on Copper-Based Super-Hydrophobic Surfaces. Langmuir, 2005, 21, 937-943.	3.5	279
10	Evaporation of Microdroplets and the Wetting of Solid Surfaces. The Journal of Physical Chemistry, 1995, 99, 13268-13271.	2.9	255
11	Immersed superhydrophobic surfaces: Gas exchange, slip and drag reduction properties. Soft Matter, 2010, 6, 714-719.	2.7	250
12	Topography Driven Spreading. Physical Review Letters, 2004, 93, 036102.	7.8	221
13	Superhydrophobic Copper Tubes with Possible Flow Enhancement and Drag Reduction. ACS Applied Materials & Interfaces, 2009, 1, 1316-1323.	8.0	204
14	Liquid marbles: topical context within soft matter and recent progress. Soft Matter, 2015, 11, 2530-2546.	2.7	204
15	Determination of the Receding Contact Angle of Sessile Drops on Polymer Surfaces by Evaporation. Langmuir, 1999, 15, 7378-7385.	3.5	179
16	Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment. Lab on A Chip, 2008, 8, 582.	6.0	179
17	Evaporation and the Wetting of a Low-Energy Solid Surface. Journal of Physical Chemistry B, 1998, 102, 1964-1967.	2.6	174
18	Porous materials show superhydrophobic to superhydrophilic switching. Chemical Communications, 2005, , 3135.	4.1	174

#	Article	IF	CITATIONS
19	The use of high aspect ratio photoresist (SU-8) for super-hydrophobic pattern prototyping. Journal of Micromechanics and Microengineering, 2004, 14, 1384-1389.	2.6	161
20	Super-hydrophobic and super-wetting surfaces: Analytical potential?. Analyst, The, 2004, 129, 284.	3.5	155
21	Plastron properties of a superhydrophobic surface. Applied Physics Letters, 2006, 89, 104106.	3.3	153
22	The superhydrophobicity of polymer surfaces: Recent developments. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1203-1217.	2.1	151
23	Global geometry and the equilibrium shapes of liquid drops on fibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206, 79-86.	4.7	133
24	Terminal velocity and drag reduction measurements on superhydrophobic spheres. Applied Physics Letters, 2009, 94, .	3.3	127
25	Molecular-Imprinted, Polymer-Coated Quartz Crystal Microbalances for the Detection of Terpenes. Analytical Chemistry, 2001, 73, 4225-4228.	6.5	124
26	Dielectrowetting Driven Spreading of Droplets. Physical Review Letters, 2011, 107, 186101.	7.8	118
27	Densityâ ~Viscosity Product of Small-Volume Ionic Liquid Samples Using Quartz Crystal Impedance Analysis. Analytical Chemistry, 2008, 80, 5806-5811.	6.5	115
28	Electrowetting of liquid marbles. Journal Physics D: Applied Physics, 2007, 40, 20-24.	2.8	105
29	Levitation-Free Vibrated Droplets: Resonant Oscillations of Liquid Marbles. Langmuir, 2009, 25, 529-533.	3.5	105
30	Electrowetting of Nonwetting Liquids and Liquid Marbles. Langmuir, 2007, 23, 918-924.	3.5	101
31	Influence of viscoelasticity and interfacial slip on acoustic wave sensors. Journal of Applied Physics, 2000, 88, 7304-7312.	2.5	97
32	NO2 detection at room temperature with copper phthalocyanine thin film devices. Sensors and Actuators B: Chemical, 2000, 67, 307-311.	7.8	92
33	Electrowetting on superhydrophobic SU-8 patterned surfaces. Sensors and Actuators A: Physical, 2006, 130-131, 189-193.	4.1	92
34	Voltage-programmable liquid optical interface. Nature Photonics, 2009, 3, 403-405.	31.4	92
35	The Shape and Stability of Small Liquid Drops on Fibers. Oil and Gas Science and Technology, 2001, 56, 47-54.	1.4	91
36	Water-repellent soil and its relationship to granularity, surface roughness and hydrophobicity: a materials science view. European Journal of Soil Science, 2005, 56, 445-452.	3.9	88

#	Article	IF	CITATIONS
37	Wetting considerations in capillary rise and imbibition in closed square tubes and open rectangular cross-section channels. Microfluidics and Nanofluidics, 2013, 15, 309-326.	2.2	88
38	Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface. Journal of Fluid Mechanics, 2013, 727, 488-508.	3.4	85
39	Intermittent aeration to improve wastewater treatment efficiency in pilot-scale constructed wetland. Science of the Total Environment, 2016, 559, 212-217.	8.0	85
40	Learning from Superhydrophobic Plants: The Use of Hydrophilic Areas on Superhydrophobic Surfaces for Droplet Controlâ€Part of the "Langmuir 25th Year: Wetting and superhydrophobicity―special issue Langmuir, 2009, 25, 14121-14128.	3.5	82
41	Surface roughness and interfacial slip boundary condition for quartz crystal microbalances. Journal of Applied Physics, 2004, 95, 373-380.	2.5	81
42	Wetting of a High-Energy Fiber Surface. Journal of Colloid and Interface Science, 1997, 186, 453-461.	9.4	73
43	Molecular imprinted polymer coated QCM for the detection of nandrolone. Analyst, The, 2002, 127, 1024-1026.	3.5	73
44	Pulse mode shear horizontal-surface acoustic wave (SH-SAW) system for liquid based sensing applications. Biosensors and Bioelectronics, 2004, 19, 627-632.	10.1	61
45	A lichen protected by a super-hydrophobic and breathable structure. Journal of Plant Physiology, 2006, 163, 1193-1197.	3.5	61
46	Critical conditions for the wetting of soils. Applied Physics Letters, 2006, 89, 094101.	3.3	59
47	Theoretical mass sensitivity of Love wave and layer guided acoustic plate mode sensors. Journal of Applied Physics, 2002, 91, 9701.	2.5	58
48	Effects of hydrophobicity on splash erosion of model soil particles by a single water drop impact. Earth Surface Processes and Landforms, 2013, 38, 1225-1233.	2.5	58
49	Plastron induced drag reduction and increased slip on a superhydrophobic sphere. Soft Matter, 2011, 7, 10100.	2.7	57
50	Self-organization of hydrophobic soil and granular surfaces. Applied Physics Letters, 2007, 90, 054110.	3.3	55
51	Detection of Virgin Olive Oil Adulteration Using Low Field Unilateral NMR. Sensors, 2014, 14, 2028-2035.	3.8	55
52	Superhydrophobic to superhydrophilic transitions of sol–gel films for temperature, alcohol or surfactant measurement. Materials Chemistry and Physics, 2007, 103, 112-117.	4.0	53
53	Not spreading in reverse: The dewetting of a liquid film into a single drop. Science Advances, 2016, 2, e1600183.	10.3	52
54	Evaporation of Microdroplets of Azeotropic Liquids. Journal of Physical Chemistry B, 2000, 104, 8217-8220.	2.6	50

#	Article	IF	CITATIONS
55	Dynamic wetting and spreading and the role of topography. Journal of Physics Condensed Matter, 2009, 21, 464122.	1.8	48
56	Dielectrowetting: The past, present and future. Current Opinion in Colloid and Interface Science, 2018, 36, 28-36.	7.4	48
57	Detection of Polycyclic Aromatic Hydrocarbons Using Quartz Crystal Microbalances. Analytical Chemistry, 2003, 75, 1573-1577.	6.5	47
58	Theoretical mass, liquid, and polymer sensitivity of acoustic wave sensors with viscoelastic guiding layers. Journal of Applied Physics, 2003, 93, 675-690.	2.5	46
59	Decoupling of the Liquid Response of a Superhydrophobic Quartz Crystal Microbalance. Langmuir, 2007, 23, 9823-9830.	3.5	45
60	Compressional acoustic wave generation in microdroplets of water in contact with quartz crystal resonators. Journal of Applied Physics, 2001, 89, 676-680.	2.5	43
61	Analysis of evaporating droplets using ellipsoidal cap geometry. Journal of Adhesion Science and Technology, 1999, 13, 1375-1391.	2.6	42
62	Electric field induced reversible spreading of droplets into films on lubricant impregnated surfaces. Applied Physics Letters, 2017, 110, .	3.3	42
63	Flexible conformable hydrophobized surfaces for turbulent flow drag reduction. Scientific Reports, 2015, 5, 10267.	3.3	41
64	Evaporation of Microdroplets of Three Alcohols. Journal of Physical Chemistry B, 1997, 101, 1265-1267.	2.6	39
65	Application of the Quartz Crystal Microbalance to the Evaporation of Colloidal Suspension Droplets. Langmuir, 2004, 20, 841-847.	3.5	35
66	Beyond the Langevin horn: Transducer arrays for the acoustic levitation of liquid drops. Physics of Fluids, 2019, 31, .	4.0	35
67	Resonant conditions for Love wave guiding layer thickness. Applied Physics Letters, 2001, 79, 3542-3543.	3.3	34
68	Passive water control at the surface of a superhydrophobic lichen. Planta, 2011, 234, 1267-1274.	3.2	34
69	Manipulated wettability of a superhydrophobic quartz crystal microbalance through electrowetting. Journal Physics D: Applied Physics, 2013, 46, 345307.	2.8	33
70	Frenkel's method and the dynamic wetting of heterogeneous planar surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206, 193-201.	4.7	32
71	The spreading of small viscous stripes of oil. Journal Physics D: Applied Physics, 1995, 28, 1925-1929.	2.8	30
72	Bioinspired nanoparticle spray-coating for superhydrophobic flexible materials with oil/water separation capabilities. Bioinspiration and Biomimetics, 2018, 13, 024001.	2.9	30

#	Article	IF	CITATIONS
73	Implications of ideas on superâ€hydrophobicity for water repellent soil. Hydrological Processes, 2007, 21, 2229-2238.	2.6	29
74	Leidenfrost transition temperature for stainless steel meshes. Materials Letters, 2016, 176, 205-208.	2.6	29
75	Amplitude scaling of a static wrinkle at an oil-air interface created by dielectrophoresis forces. Applied Physics Letters, 2010, 97, .	3.3	28
76	Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces. PLoS ONE, 2012, 7, e36983.	2.5	28
77	Nickel phthalocyanine photovoltaic devices. Optical Materials, 1996, 6, 89-92.	3.6	27
78	Acoustic wave–liquid interactions. Materials Science and Engineering C, 2000, 12, 17-22.	7.3	27
79	Evaluation of a Microfluidic Device for the Electrochemical Determination of Halide Content in Ionic Liquids. Analytical Chemistry, 2009, 81, 1628-1637.	6.5	27
80	Transitions of waterâ€drop impact behaviour on hydrophobic and hydrophilic particles. European Journal of Soil Science, 2013, 64, 324-333.	3.9	27
81	Analysis of Shape Distortions in Sessile Drops. Langmuir, 2001, 17, 6995-6998.	3.5	26
82	Effect of Particle Size on Droplet Infiltration into Hydrophobic Porous Media As a Model of Water Repellent Soil. Environmental Science & Technology, 2011, 45, 9666-9670.	10.0	26
83	Drag reduction properties of superhydrophobic mesh pipes. Surface Topography: Metrology and Properties, 2017, 5, 034001.	1.6	26
84	Magnetic field dependence of the phonon scattering and phonon emission by a 2DEG in a Si MOSFET. Surface Science, 1988, 196, 410-416.	1.9	25
85	Surface acoustic wave resonances in the spreading of viscous fluids. Physical Review B, 1999, 59, 8262-8270.	3.2	25
86	The effect of NO2 doping on the gas sensing properties of copper phthalocyanine thin film devices. Thin Solid Films, 2000, 360, 10-12.	1.8	25
87	Low Friction Droplet Transportation on a Substrate with a Selective Leidenfrost Effect. ACS Applied Materials & Interfaces, 2016, 8, 22658-22663.	8.0	25
88	Mass sensitivity of acoustic wave devices from group and phase velocity measurements. Journal of Applied Physics, 2002, 92, 3368-3373.	2.5	23
89	Enantioselective detection of l-serine. Sensors and Actuators B: Chemical, 2003, 89, 103-106.	7.8	23
90	Assessing the economic suitability of aeration and the influence of bed heating on constructed wetlands treatment efficiency and life-span. Ecological Engineering, 2015, 83, 184-190.	3.6	23

#	Article	IF	CITATIONS
91	Estimation of contact angles on fibers. Journal of Adhesion Science and Technology, 1999, 13, 1457-1469.	2.6	22
92	Development of a combined surface plasmon resonance/surface acoustic wave device for the characterization of biomolecules. Measurement Science and Technology, 2009, 20, 124011.	2.6	22
93	Double-sided slippery liquid-infused porous materials using conformable mesh. Scientific Reports, 2019, 9, 13280.	3.3	22
94	Frenkel's method and the spreading of small spherical droplets. Journal Physics D: Applied Physics, 1994, 27, 2619-2623.	2.8	21
95	Layer guided shear horizontally polarized acoustic plate modes. Journal of Applied Physics, 2002, 91, 5735-5744.	2.5	21
96	Detection of Heat Pulses by the Two-Dimensional Electron Gas in a Silicon Device. Physical Review Letters, 1988, 61, 180-182.	7.8	20
97	Experimental study of Love wave devices with thick guiding layers. Sensors and Actuators A: Physical, 2004, 109, 180-185.	4.1	20
98	Investigation of the drag reducing effect of hydrophobized sand on cylinders. Journal Physics D: Applied Physics, 2014, 47, 205302.	2.8	20
99	Small volume laboratory on a chip measurements incorporating the quartz crystal microbalance to measure the viscosity-density product of room temperature ionic liquids. Biomicrofluidics, 2010, 4, 14107.	2.4	19
100	Capillary origami: superhydrophobic ribbon surfaces and liquid marbles. Beilstein Journal of Nanotechnology, 2011, 2, 145-151.	2.8	19
101	Capillary origami and superhydrophobic membrane surfaces. Applied Physics Letters, 2013, 102, .	3.3	18
102	Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle. PLoS ONE, 2015, 10, e0141926.	2.5	17
103	Long-term trends in the honeybee â€~whooping signal' revealed by automated detection. PLoS ONE, 2017, 12, e0171162.	2.5	17
104	Non-Contact Universal Sample Presentation for Room Temperature Macromolecular Crystallography Using Acoustic Levitation. Scientific Reports, 2019, 9, 12431.	3.3	17
105	Electrical properties of nickel phthalocyanine (NiPc) sandwich devices incorporating a tetracyanoquinodimethane (TCNQ) layer. Semiconductor Science and Technology, 1997, 12, 455-459.	2.0	16
106	Analysis of clogging in constructed wetlands using magnetic resonance. Analyst, The, 2011, 136, 2283.	3.5	16
107	Low-Friction Self-Centering Droplet Propulsion and Transport Using a Leidenfrost Herringbone-Ratchet Structure. Physical Review Applied, 2019, 11, .	3.8	15
108	Generalized Love waves. Europhysics Letters, 2002, 58, 818-822.	2.0	14

#	Article	IF	CITATIONS
109	Near Axisymmetric Partial Wetting Using Interface-Localized Liquid Dielectrophoresis. Langmuir, 2016, 32, 10844-10850.	3.5	14
110	SU-8 Guiding Layer for Love Wave Devices. Sensors, 2007, 7, 2539-2547.	3.8	13
111	Surface acoustic wave–liquid drop interactions. Sensors and Actuators A: Physical, 1999, 76, 89-92.	4.1	12
112	Developing interface localized liquid dielectrophoresis for optical applications. Proceedings of SPIE, 2012, , .	0.8	12
113	Extensive Vibrational Characterisation and Long-Term Monitoring of Honeybee Dorso-Ventral Abdominal Vibration signals. Scientific Reports, 2018, 8, 14571.	3.3	12
114	Harmonic Love wave devices for biosensing applications. Electronics Letters, 2001, 37, 340.	1.0	11
115	Drop impact behaviour on alternately hydrophobic and hydrophilic layered bead packs. Chemical Engineering Research and Design, 2016, 110, 200-208.	5.6	11
116	Woven Natural Fibre Reinforced Composite Materials for Medical Imaging. Materials, 2020, 13, 1684.	2.9	11
117	Interaction of surface acoustic waves with viscous liquids. Faraday Discussions, 1997, 107, 15-26.	3.2	10
118	Capillary Penetration into Inclined Circular Glass Tubes. Langmuir, 2016, 32, 1289-1298.	3.5	10
119	A viscous switch for liquid-liquid dewetting. Communications Physics, 2020, 3, .	5.3	10
120	Bubble Control, Levitation, and Manipulation Using Dielectrophoresis. Advanced Materials Interfaces, 2021, 8, 2001204.	3.7	10
121	Residual conductance at atmospheric pressure in electroformed thin gold films. Journal of Materials Science Letters, 1992, 11, 1240-1242.	0.5	9
122	A natural fibre reinforced composite material for multi-modal medical imaging and radiotherapy treatment. Materials Letters, 2019, 252, 289-292.	2.6	9
123	SU-8 Guiding Layer for Love Wave Devices. Sensors, 2007, 7, 2539-2547.	3.8	9
124	ST Quartz Acoustic Wave Sensors with Sectional Guiding Layers. Sensors, 2008, 8, 4384-4391.	3.8	9
125	Evaluation of coated QCM for the detection of atmospheric ozone. Analyst, The, 2011, 136, 2963.	3.5	8
126	Thermal conductivity measurement of liquids in a microfluidic device. Microfluidics and Nanofluidics, 2011, 10, 123-132.	2.2	8

#	Article	IF	CITATIONS
127	Embroidered Coils for Magnetic Resonance Sensors. Electronics (Switzerland), 2013, 2, 168-177.	3.1	8
128	Planar selective Leidenfrost propulsion without physically structured substrates or walls. Applied Physics Letters, 2020, 117, .	3.3	8
129	Electrostatic control of dewetting dynamics. Applied Physics Letters, 2020, 116, .	3.3	8
130	Analysis of evaporating thick liquid films on solids. Journal of Adhesion Science and Technology, 2002, 16, 1869-1881.	2.6	7
131	Acoustic determination of polymer molecular weights and rotation times. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1490-1495.	2.1	7
132	ST Quartz Acoustic Wave Sensors with Sectional Guiding Layers. Sensors, 2008, 8, 4384-4391.	3.8	7
133	Determination of the Physical Properties of Room Temperature Ionic Liquids Using a Love Wave Device. Analytical Chemistry, 2011, 83, 6717-6721.	6.5	7
134	MRI measurements of dynamic clogging in porous systems using sterilised sludge. Microporous and Mesoporous Materials, 2013, 178, 48-52.	4.4	7
135	Plastron Respiration Using Commercial Fabrics. Materials, 2014, 7, 484-495.	2.9	7
136	Underlying conduction in electroformed gold and silver films. Journal of Materials Science Letters, 1993, 12, 125-127.	0.5	6
137	Electrical properties of thin gold films on (3-Mercaptopropyl)trimethoxysilane (MPS) treated glass substrates. Vacuum, 1995, 46, 315-318.	3.5	6
138	Reflection of surface acoustic waves by localized wetting liquids. Applied Physics Letters, 1997, 71, 3785-3786.	3.3	6
139	Investigation of Deposition of Monodisperse Particles onto Fibers. Langmuir, 2002, 18, 4979-4983.	3.5	6
140	The effect of SU-8 patterned surfaces on the response of the quartz crystal microbalance. Sensors and Actuators A: Physical, 2005, 123-124, 73-76.	4.1	6
141	Separate density and viscosity determination of room temperature ionic liquids using dual Quartz Crystal Microbalances. , 2009, , .		6
142	The Self Assembly of Superhydrophobic Copper Thiolate Films on Copper in Thiol Solutions. Zeitschrift Fur Physikalische Chemie, 2012, 226, 187-200.	2.8	6
143	Advances in Electronics Prompt a Fresh Look at Continuous Wave (CW) Nuclear Magnetic Resonance (NMR). Electronics (Switzerland), 2017, 6, 89.	3.1	6
144	Controlling the breakup of toroidal liquid films on solid surfaces. Scientific Reports, 2021, 11, 8120.	3.3	6

#	Article	IF	CITATIONS
145	The Effect of a Magnetic Field on the Phonon Emission from a Hot 2-DEG in the Inversion Layer of a Silicon MOSFET. Japanese Journal of Applied Physics, 1987, 26, 1757.	1.5	6
146	Surface acoustic wave device design for gas sensing applications. Electronics Letters, 1998, 34, 1706.	1.0	5
147	Pulse mode operation of Love wave devices for biosensing applications. Analyst, The, 2001, 126, 2107-2109.	3.5	5
148	Lithium tantalate layer guided plate mode sensors. Sensors and Actuators A: Physical, 2006, 132, 241-244.	4.1	5
149	Low-Cost QCM Sensor System for Screening Semen Samples. Journal of Sensors, 2010, 2010, 1-5.	1.1	5
150	Towards MRI microarrays. Chemical Communications, 2010, 46, 2420.	4.1	5
151	Lithographically fabricated SU8 composite structures for wettability control. Surface and Coatings Technology, 2014, 240, 179-183.	4.8	5
152	Temperature dependence of magnetic resonance probes for use as embedded sensors in constructed wetlands. Sensors and Actuators A: Physical, 2016, 241, 19-26.	4.1	5
153	Quantum Oscillations in the Phonon Scattering by a 2-DEG of a Si-MOSFET. Japanese Journal of Applied Physics, 1987, 26, 1755.	1.5	5
154	A surface acoustic wave technique for the observation of dynamic wetting. Journal Physics D: Applied Physics, 1995, 28, 1930-1936.	2.8	4
155	Cold-ChloroIndium Phthalocyanine (ClInPc)-metal sandwich structures. International Journal of Electronics, 1996, 81, 371-376.	1.4	4
156	Layer guided-acoustic plate mode biosensors for monitoring MHC–peptide interactions. Analyst, The, 2006, 131, 892-894.	3.5	4
157	Sensor response of superhydrophobic quartz crystal resonators. , 2008, , .		4
158	Magnetic Resonance Imaging: A Tool for Pork Pie Development. Foods, 2013, 2, 393-400.	4.3	4
159	Thin film metal-insulator-metal structure with a Langmuir-Blodgett overlayer. Vacuum, 1994, 45, 897-900.	3.5	3
160	Layer-guided shear acoustic plate mode sensor. Applied Physics Letters, 2003, 82, 2181-2183.	3.3	3
161	An EP-SAW for measurements of particulate matter in ambient air. Nondestructive Testing and Evaluation, 2005, 20, 3-7.	2.1	3
162	Semen quality detection using time of flight and acoustic wave sensors. Applied Physics Letters, 2007, 90, 154103.	3.3	3

#	Article	IF	CITATIONS
163	Hydrophobic Smart Material for Water Transport and Collection. , 2012, , 49-55.		3
164	Monitoring accelerated clogging of a model horizontal sub-surface flow constructed wetland using magnetic resonance transverse relaxation times. International Journal of Environmental Science and Technology, 2014, 11, 1189-1196.	3.5	3
165	Transient effect determination of spin–lattice (TEDSpiL) relaxation times using continuous wave NMR. Magnetic Resonance in Chemistry, 2017, 55, 853-855.	1.9	3
166	Lattice Boltzmann Simulations of Multiphase Dielectric Fluids. Langmuir, 2021, 37, 7328-7340.	3.5	3
167	Electroluminescence and electron emission in planar MIM structures. International Journal of Electronics, 1994, 76, 717-721.	1.4	2
168	Experimental Study of Love Wave Sensor Response by Phase and Group Velocity Measurement. IEEE Sensors Journal, 2004, 4, 216-220.	4.7	2
169	Assessing sperm motility using acoustic plate mode devices. Frequency Control Symposium and Exhibition, Proceedings of the IEEE International, 2007, , .	0.0	2
170	Love wave sensors: Sectional guiding layers. , 2008, , .		2
171	Magnetic Resonance Sensors. Sensors, 2014, 14, 21722-21725.	3.8	2
172	Honey Bee Vibration Monitoring Using the 805M1 Accelerometer. Proceedings (mdpi), 2018, 4, .	0.2	2
173	Advanced Sandwich Composite Cores for Patient Support in Advanced Clinical Imaging and Oncology Treatment. Materials, 2020, 13, 3549.	2.9	2
174	NMR CAPIBarA: Proof of Principle of a Low-Field Unilateral Magnetic Resonance System for Monitoring of the Placenta during Pregnancy. Applied Sciences (Switzerland), 2020, 10, 162.	2.5	2
175	Detection of 9.4 GHz ultrasonic waves using a thin-film CdS bolometer. Journal Physics D: Applied Physics, 1988, 21, 1572-1575.	2.8	1
176	Acoustic phonon scattering by a 2-dimensional electron gas. Physica B: Condensed Matter, 1990, 165-166, 873-874.	2.7	1
177	Electroformed thin gold films on regularly corrugated substrates. Vacuum, 1993, 44, 1001-1003.	3.5	1
178	Negative differential resistance in thin metal films with a cadmium arachidate overlayer. International Journal of Electronics, 1994, 76, 771-775.	1.4	1
179	Negative differential resistance in MIM devices from vacuum to atmospheric pressure. International Journal of Electronics, 1996, 81, 435-439.	1.4	1
180	An acoustic technique for the monitoring of dynamic wetting behavior. Journal of Adhesion Science and Technology, 1999, 13, 1471-1480.	2.6	1

#	Article	IF	CITATIONS
181	A SAW oscillator for monitoring particulate matter in air. Nondestructive Testing and Evaluation, 2005, 20, 231-235.	2.1	1
182	Response of quartz crystal resonators possessing a superhydrophobic surface. Frequency Control Symposium and Exhibition, Proceedings of the IEEE International, 2007, , .	0.0	1
183	Long term monitoring of constructed wetlands using an NMR sensor. , 2009, , .		1
184	Layer guided surface acoustic wave sensors using langasite substrates. , 2009, , .		1
185	Density and viscosity measurements of room temperature ionic liquids using patterned Quartz Crystal Microbalances. , 2009, , .		1
186	A magnetic resonance disruption (MaRDi) technique for the detection of surface immobilised magnetic nanoparticles. Analytical Methods, 2017, 9, 1681-1683.	2.7	1
187	An acoustic on-chip goniometer for room temperature macromolecular crystallography. Lab on A Chip, 2017, 17, 4225-4230.	6.0	1
188	Novel Food-Safe Spin-Lattice Relaxation Time Calibration Samples for Use in Magnetic Resonance Sensor Development. Proceedings (mdpi), 2017, 2, .	0.2	1
189	An evaluation of kefir grain size with magnetic resonance imaging to observe the fermentation of milk. Magnetic Resonance in Chemistry, 2019, 57, 730-737.	1.9	1
190	A Microcontroller System for the Automation of Transient Effect Determination of the Spin-Lattice Relaxation Time Using Continuous Wave NMR. Proceedings (mdpi), 2018, 4, .	0.2	1
191	Operational Amplifiers Revisited for Low Field Magnetic Resonance Relaxation Time Measurement Electronics. Proceedings (mdpi), 2020, 42, 1.	0.2	1
192	The influence of nitrogen on the electrical conductivity of planar metal-insulator-metal structures. Journal of Materials Science Letters, 1995, 14, 830-831.	0.5	0
193	Influence of film resistance on negative differential resistance characteristics in electroformed thin-film devices. International Journal of Electronics, 1995, 78, 501-508.	1.4	Ο
194	Gold-chloroindium phthalocyanine (ClInPc)-metal sandwich structures. , 1996, 2780, 289.		0
195	Negative differential resistance in MIM devices from vacuum to atmospheric pressure. , 1996, 2780, 38.		0
196	Theoretical model of Rayleigh wave interaction with stripes of viscous liquids. , 0, , .		0
197	Layer guided shear horizontal acoustic plate mode sensors. , 0, , .		0
198	Small volume determination of the viscosity-density product for ionic liquids using quartz crystal harmonics. , 2008, , .		0

#	Article	IF	CITATIONS
199	A preliminary study of milk powder hydration using TEDSpiL continuous wave NMR. Magnetic Resonance in Chemistry, 2019, 57, 695-699.	1.9	Ο
200	Editorial on Special Issue "Applications of Low Field Magnetic Resonance― Applied Sciences (Switzerland), 2021, 11, 8471.	2.5	0
201	Clogging Measurement, Dissolved Oxygen and Temperature Control in a Wetland Through the Development of an Autonomous Reed Bed Installation (ARBI). , 2016, , 165-177.		0
202	Superhydrophobicity: Localized Parameters And Gradient Surfaces. , 0, , 217-234.		0
203	Dielectrowetting on curved surfaces. Applied Physics Letters, 2022, 120, 191601.	3.3	0