
Matěj Velický

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9206810/publications.pdf Version: 2024-02-01

ΜΑΤΆΝ VELICEÃ16

#	Article	IF	CITATIONS
1	Localized Spectroelectrochemical Identification of Basal Plane and Defect-Related Charge-Transfer Processes in Graphene. Journal of Physical Chemistry Letters, 2022, 13, 642-648.	2.1	8
2	Activation of Raman modes in monolayer transition metal dichalcogenides through strong interaction with gold. Physical Review B, 2022, 105, .	1.1	9
3	Nano-optical Visualization of Interlayer Interactions in WSe ₂ /WS ₂ Heterostructures. Journal of Physical Chemistry Letters, 2022, 13, 5854-5859.	2.1	5
4	Electrochemical Detection of Isolated Nanoscale Defects in 2D Transition Metal Dichalcogenides. Journal of Physical Chemistry C, 2022, 126, 11636-11641.	1.5	8
5	In Situ Raman Microdroplet Spectroelectrochemical Investigation of CuSCN Electrodeposited on Different Substrates. Nanomaterials, 2021, 11, 1256.	1.9	3
6	Franckeite as an Exfoliable Naturally Occurring Topological Insulator. Nano Letters, 2021, 21, 7781-7788.	4.5	6
7	Electrochemical kinetics as a function of transition metal dichalcogenide thickness. Electrochimica Acta, 2021, 393, 139027.	2.6	12
8	Electrochemistry of 2D nanomaterials. Frontiers of Nanoscience, 2021, , 485-536.	0.3	3
9	Electrolyte versus Dielectric Gating of Two-Dimensional Materials. Journal of Physical Chemistry C, 2021, 125, 21803-21809.	1.5	10
10	Electron Tunneling through Boron Nitride Confirms Marcus–Hush Theory Predictions for Ultramicroelectrodes. ACS Nano, 2020, 14, 993-1002.	7.3	16
11	The Intricate Love Affairs between MoS ₂ and Metallic Substrates. Advanced Materials Interfaces, 2020, 7, 2001324.	1.9	15
12	Strain and Charge Doping Fingerprints of the Strong Interaction between Monolayer MoS ₂ and Gold. Journal of Physical Chemistry Letters, 2020, 11, 6112-6118.	2.1	77
13	Achieving extremely high optical contrast of atomically-thin MoS ₂ . Nanotechnology, 2020, 31, 145706.	1.3	15
14	Comparable Enhancement of TERS Signals from WSe2 on Chromium and Gold. Journal of Physical Chemistry C, 2020, 124, 8971-8977.	1.5	5
15	Comparable Enhancement of TERS Signals from WSe on Chromium and Gold. Journal of Physical Chemistry C, 2020, 124, .	1.5	1
16	Exfoliation of Centimetre-Sized Transition Metal Dichalcogenide Monolayers. , 2019, , .		0
17	Electrochemistry of the Basal Plane versus Edge Plane of Graphite Revisited. Journal of Physical Chemistry C, 2019, 123, 11677-11685.	1.5	67
18	Modification of Conductive Electrodes with Two-Dimensional Materials. ECS Meeting Abstracts, 2019,	0.0	0

Matä» J Velický

#	Article	IF	CITATIONS
19	Optimising the visibility of graphene and graphene oxide on gold with multilayer heterostructures. Nanotechnology, 2018, 29, 275205.	1.3	14
20	Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers. ACS Nano, 2018, 12, 10463-10472.	7.3	203
21	Rigorous and Accurate Contrast Spectroscopy for Ultimate Thickness Determination of Micrometer-Sized Graphene on Gold and Molecular Sensing. ACS Applied Materials & Interfaces, 2018, 10, 22520-22528.	4.0	12
22	Electrowetting on conductors: anatomy of the phenomenon. Faraday Discussions, 2017, 199, 49-61.	1.6	15
23	Exfoliation of natural van der Waals heterostructures to a single unit cell thickness. Nature Communications, 2017, 8, 14410.	5.8	93
24	From two-dimensional materials to their heterostructures: An electrochemist's perspective. Applied Materials Today, 2017, 8, 68-103.	2.3	212
25	Understanding 2D Crystal Vertical Heterostructures at the Atomic Scale Using Advanced Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 1714-1715.	0.2	Ο
26	Hydrogen evolution and capacitance behavior of Au/Pd nanoparticle-decorated graphene heterostructures. Applied Materials Today, 2017, 8, 125-131.	2.3	20
27	Asymmetric MoS ₂ /Graphene/Metal Sandwiches: Preparation, Characterization, and Application. Advanced Materials, 2016, 28, 8256-8264.	11.1	64
28	In Situ Study of Li Intercalation into Highly Crystalline Graphitic Flakes of Varying Thicknesses. Journal of Physical Chemistry Letters, 2016, 7, 4291-4296.	2.1	70
29	Photoelectrochemistry of Pristine Mono- and Few-Layer MoS ₂ . Nano Letters, 2016, 16, 2023-2032.	4.5	107
30	Electrochemical and Spectroelectrochemical Characterization of Graphene Electrodes Derived from Solutionâ€Based Exfoliation. Electroanalysis, 2015, 27, 1026-1034.	1.5	11
31	Electron transfer kinetics on natural crystals of MoS ₂ and graphite. Physical Chemistry Chemical Physics, 2015, 17, 17844-17853.	1.3	57
32	Mechanical stability of substrate-bound graphene in contact with aqueous solutions. 2D Materials, 2015, 2, 024011.	2.0	12
33	Symmetric and Asymmetric Decoration of Graphene: Bimetalâ€Graphene Sandwiches. Advanced Functional Materials, 2015, 25, 2899-2909.	7.8	31
34	Electrostatic Stabilization of Graphene in Organic Dispersions. Langmuir, 2015, 31, 13068-13076.	1.6	32
35	Functionalization of graphene at the organic/water interface. Chemical Science, 2015, 6, 1316-1323.	3.7	60
36	Role of surface contaminants, functionalities, defects and electronic structure: general discussion. Faraday Discussions, 2014, 172, 365-395.	1.6	1

3

Matä>j Velický

#	Article	IF	CITATIONS
37	Mechanism of Ion Transfer in Supported Liquid Membrane Systems: Electrochemical Control over Membrane Distribution. Analytical Chemistry, 2014, 86, 435-442.	3.2	16
38	Electron Transfer Kinetics on Mono- and Multilayer Graphene. ACS Nano, 2014, 8, 10089-10100.	7.3	160
39	Carbon electrode interfaces for synthesis, sensing and electrocatalysis: general discussion. Faraday Discussions, 2014, 172, 497-520.	1.6	1
40	Electrochemistry of well-defined graphene samples: role of contaminants. Faraday Discussions, 2014, 172, 261-272.	1.6	16
41	On the controlled electrochemical preparation of R4N+ graphite intercalation compounds and their host structural deformation effects. Journal of Electroanalytical Chemistry, 2014, 730, 34-40.	1.9	25
42	Electrochemistry in a drop: a study of the electrochemical behaviour of mechanically exfoliated graphene on photoresist coated silicon substrate. Chemical Science, 2014, 5, 582-589.	3.7	48
43	Use of voltammetry for in vitro equilibrium and transport studies of ionisable drugs. ADMET and DMPK, 2014, 2, .	1.1	5
44	Permeation of a Fully Ionized Species Across a Polarized Supported Liquid Membrane. Analytical Chemistry, 2012, 84, 2541-2547.	3.2	26
45	Hydrodynamic voltammetry at the liquid–liquid interface: Application to the transfer of ionised drug molecules. Journal of Electroanalytical Chemistry, 2012, 683, 94-102.	1.9	16
46	On the stability of the silver/silver sulfate reference electrode. Analytical Methods, 2012, 4, 1207.	1.3	17
47	In situ artificial membrane permeation assay under hydrodynamic control: Correlation between drug in vitro permeability and fraction absorbed in humans. European Journal of Pharmaceutical Sciences, 2011, 44, 299-309.	1.9	14
48	In Situ Artificial Membrane Permeation Assay under Hydrodynamic Control: Permeability-pH Profiles of Warfarin and Verapamil. Pharmaceutical Research, 2010, 27, 1644-1658.	1.7	28