List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9206641/publications.pdf Version: 2024-02-01

		2675	5120
331	31,174	95	166
papers	citations	h-index	g-index
341	341	341	10065
all docs	docs citations	times ranked	citing authors

WOO SI-Y

#	Article	IF	CITATIONS
1	Tensile properties of the human femur-anterior cruciate ligament-tibia complex. American Journal of Sports Medicine, 1991, 19, 217-225.	4.2	1,049
2	Biomechanical Analysis of an Anatomic Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 2002, 30, 660-666.	4.2	867
3	Effects of Increasing Tibial Slope on the Biomechanics of the Knee. American Journal of Sports Medicine, 2004, 32, 376-382.	4.2	643
4	Knee stability and graft function following anterior cruciate ligament reconstruction: Comparison between 11 o'clock and 10 o'clock femoral tunnel placement. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2003, 19, 297-304.	2.7	612
5	Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. Journal of Orthopaedic Research, 2004, 22, 85-89.	2.3	553
6	Effects of postmortem storage by freezing on ligament tensile behavior. Journal of Biomechanics, 1986, 19, 399-404.	2.1	512
7	In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. Journal of Orthopaedic Research, 1997, 15, 285-293.	2.3	498
8	The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. Journal of Biomechanics, 1999, 32, 395-400.	2.1	474
9	Quantitative Analysis of Human Cruciate Ligament Insertions. Arthroscopy - Journal of Arthroscopic and Related Surgery, 1999, 15, 741-749.	2.7	474
10	THE EFFECTIVENESS OF RECONSTRUCTION OF THE ANTERIOR CRUCIATE LIGAMENT WITH HAMSTRINGS AND PATELLAR TENDON. Journal of Bone and Joint Surgery - Series A, 2002, 84, 907-914.	3.0	435
11	Mechanical properties of tendons and ligaments. Biorheology, 1982, 19, 397-408.	0.4	365
12	Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. Journal of Orthopaedic Research, 2000, 18, 109-115.	2.3	361
13	Effects of early intermittent passive mobilization on healing canine flexor tendons. Journal of Hand Surgery, 1982, 7, 170-175.	1.6	357
14	Medial collateral ligament healing. American Journal of Sports Medicine, 1983, 11, 379-389.	4.2	357
15	Tensile and viscoelastic properties of human patellar tendon. Journal of Orthopaedic Research, 1994, 12, 796-803.	2.3	348
16	Biomechanics of knee ligaments: injury, healing, and repair. Journal of Biomechanics, 2006, 39, 1-20.	2.1	344
17	Knee Stability and Graft Function after Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 2004, 32, 1825-1832.	4.2	342
18	The Human Posterior Cruciate Ligament Complex: An Interdisciplinary Study. American Journal of Sports Medicine, 1995, 23, 736-745.	4.2	333

#	Article	IF	CITATIONS
19	Biomechanical Analysis of a Posterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 2000, 28, 32-39.	4.2	324
20	Biomechanical Analysis of a Double-Bundle Posterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 2000, 28, 144-151.	4.2	320
21	Hamstrings—an anterior cruciate ligament protagonist. American Journal of Sports Medicine, 1993, 21, 231-237.	4.2	306
22	The Biomechanical and Biochemical Properties of Swine Tendons — Long Term Effects of Exercise on the Digital Extensors. Connective Tissue Research, 1980, 7, 177-183.	2.3	301
23	Nonlinear material properties of intact cornea and sclera. Experimental Eye Research, 1972, 14, 29-39.	2.6	295
24	The Effects of Platelet-Derived Growth Factor-BB on Healing of the Rabbit Medial Collateral Ligament. American Journal of Sports Medicine, 1998, 26, 549-554.	4.2	271
25	A standardized method for assessment of elbow function. Journal of Shoulder and Elbow Surgery, 1999, 8, 351-354.	2.6	268
26	The effect of anterior cruciate ligament graft fixation site at the tibia on knee stability: Evaluation using a robotic testing system. Arthroscopy - Journal of Arthroscopic and Related Surgery, 1997, 13, 177-182.	2.7	265
27	The Biomechanical Interdependence between the Anterior Cruciate Ligament Replacement Graft and the Medial Meniscus. American Journal of Sports Medicine, 2001, 29, 226-231.	4.2	259
28	The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2000, 16, 633-639.	2.7	258
29	Measurements of nonhomogeneous, directional mechanical properties of articular cartilage in tension. Journal of Biomechanics, 1976, 9, 785-791.	2.1	257
30	A Biomechanical Analysis of Rotator Cuff Deficiency in a Cadaveric Model. American Journal of Sports Medicine, 1996, 24, 286-292.	4.2	252
31	A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. Journal of Biomechanics, 1996, 29, 1357-1360.	2.1	250
32	Tissue Engineering of Ligament and Tendon Healing. Clinical Orthopaedics and Related Research, 1999, 367, S312-S323.	1.5	247
33	Cell orientation determines the alignment of cell-produced collagenous matrix. Journal of Biomechanics, 2003, 36, 97-102.	2.1	247
34	Treatment of the medial collateral ligament injury. American Journal of Sports Medicine, 1987, 15, 22-29.	4.2	242
35	The Time and History-Dependent Viscoelastic Properties of the Canine Medial Collateral Ligament. Journal of Biomechanical Engineering, 1981, 103, 293-298.	1.3	240
36	Immobility effects on synovial joints. The pathomechanics of joint contracture1. Biorheology, 1980, 17, 95-110.	0.4	234

#	Article	IF	CITATIONS
37	Effect of Capsular Injury on Acromioclavicular Joint Mechanics. Journal of Bone and Joint Surgery - Series A, 2001, 83, 1344-1351.	3.0	232
38	The Importance of Controlled Passive Mobilization on Flexor Tendon Healing: <i>A Biomechanical Study</i> . Acta Orthopaedica, 1981, 52, 615-622.	1.4	230
39	Enhancement of Tendon-Bone Integration of Anterior Cruciate Ligament Grafts with Bone Morphogenetic Protein-2 Gene Transfer. Journal of Bone and Joint Surgery - Series A, 2002, 84, 1123-1131.	3.0	225
40	Biomechanics of Knee Ligaments. American Journal of Sports Medicine, 1999, 27, 533-543.	4.2	223
41	The Effect of Immobilization on Collagen Turnover in Connective Tissue: A Biochemical-Biomechanical Correlation. Acta Orthopaedica, 1982, 53, 325-332.	1.4	215
42	Use of patellar tendon autograft for anterior cruciate ligament reconstruction in the rabbit: A long-term histologic and biomechanical study. Journal of Orthopaedic Research, 1989, 7, 474-485.	2.3	212
43	The effect of axial tibial torque on the function of the anterior cruciate ligament. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2002, 18, 394-398.	2.7	210
44	Effect of growth factors on matrix synthesis by ligament fibroblasts. Journal of Orthopaedic Research, 1997, 15, 18-23.	2.3	207
45	The Use of a Universal Force-Moment Sensor to Determine In-Situ Forces in Ligaments: A New Methodology. Journal of Biomechanical Engineering, 1995, 117, 1-7.	1.3	204
46	The effect of rotator cuff tears on reaction forces at the glenohumeral joint. Journal of Orthopaedic Research, 2002, 20, 439-446.	2.3	198
47	Connective tissue response to immobility. Arthritis and Rheumatism, 1975, 18, 257-264.	6.7	197
48	The Use of Robotics Technology to Study Human Joint Kinematics: A New Methodology. Journal of Biomechanical Engineering, 1993, 115, 211-217.	1.3	187
49	Interspecies variation of compressive biomechanical properties of the meniscus. Journal of Biomedical Materials Research Part B, 1995, 29, 823-828.	3.1	183
50	The effects of multiple-strand suture methods on the strength and excusion of repaired intrasynovial flexor tendons: A biomechanical study in dogs. Journal of Hand Surgery, 1998, 23, 97-104.	1.6	182
51	An in vitro mechanical and histological study of acute stretching on rabbit tibial nerve. Journal of Orthopaedic Research, 1990, 8, 694-701.	2.3	178
52	Collagen Cross-Linking Alterations in Joint Contractures: Changes in the Reducible Cross-Links in Periarticular Connective Tissue Collagen After Nine Weeks of Immobilization. Connective Tissue Research, 1977, 5, 15-19.	2.3	176
53	The mechanical properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates. Journal of Orthopaedic Research, 1993, 11, 58-67.	2.3	176
54	Effect of growth factors on the proliferation of fibroblasts from the medial collateral and anterior cruciate ligaments. Journal of Orthopaedic Research, 1995, 13, 184-190.	2.3	175

#	Article	IF	CITATIONS
55	A Multidisciplinary Study of the Healing of an Intraarticular Anterior Cruciate Ligament Graft in a Goat Model. American Journal of Sports Medicine, 2001, 29, 620-626.	4.2	174
56	Functional Evaluation of the Ligaments at the Acromioclavicular Joint during Anteroposterior and Superoinferior Translation. American Journal of Sports Medicine, 1997, 25, 858-862.	4.2	171
5 7	Importance of Tibial Slope for Stability of the Posterior Cruciate Ligament—Deficient Knee. American Journal of Sports Medicine, 2007, 35, 1443-1449.	4.2	170
58	Hamstring graft motion in the femoral bone tunnel when using titanium button/ polyester tape fixation. Knee Surgery, Sports Traumatology, Arthroscopy, 1999, 7, 215-219.	4.2	169
59	Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering. Journal of Biomechanics, 2014, 47, 1979-1986.	2.1	169
60	Flexor tendon repair. Journal of Orthopaedic Research, 1986, 4, 119-128.	2.3	166
61	Cyclic Mechanical Stretching of Human Tendon Fibroblasts Increases the Production of Prostaglandin E 2 and Levels of Cyclooxygenase Expression: A Novel In Vitro Model Study. Connective Tissue Research, 2003, 44, 128-133.	2.3	163
62	Tensile properties of the medial collateral ligament as a function of age. Journal of Orthopaedic Research, 1986, 4, 133-141.	2.3	158
63	Treatment of the medial collateral ligament injury. American Journal of Sports Medicine, 1987, 15, 15-21.	4.2	158
64	The effects of strain rate on the properties of the medial collateral ligament in skeletally immature and mature rabbits: A biomechanical and histological study. Journal of Orthopaedic Research, 1990, 8, 712-721.	2.3	158
65	Injury and Repair of Ligaments and Tendons. Annual Review of Biomedical Engineering, 2000, 2, 83-118.	12.3	158
66	Healing and Repair of Ligament Injuries in the Knee. Journal of the American Academy of Orthopaedic Surgeons, The, 2000, 8, 364-372.	2.5	156
67	On the viscoelastic properties of the anteromedial bundle of the anterior cruciate ligament. Journal of Biomechanics, 1993, 26, 447-452.	2.1	149
68	The effects of refreezing on the viscoelastic and tensile properties of ligaments. Journal of Biomechanics, 2006, 39, 1153-1157.	2.1	147
69	A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation. Journal of Biomechanics, 2004, 37, 383-390.	2.1	136
70	An Improved Method to Analyze the Stress Relaxation of Ligaments Following a Finite Ramp Time Based on the Quasi-Linear Viscoelastic Theory. Journal of Biomechanical Engineering, 2004, 126, 92-97.	1.3	135
71	Determination of thein situ forces and force distribution within the human anterior cruciate ligament. Annals of Biomedical Engineering, 1995, 23, 467-474.	2.5	134
72	Determination of the In Situ Forces in the Human Posterior Cruciate Ligament Using Robotic Technology. American Journal of Sports Medicine, 1998, 26, 395-401.	4.2	134

#	Article	IF	CITATIONS
73	A Functional Comparison of Animal Anterior Cruciate Ligament Models to the Human Anterior Cruciate Ligament. Annals of Biomedical Engineering, 1998, 26, 345-352.	2.5	131
74	A quantitative analysis of valgus torque on the ACL: A human cadaveric study. Journal of Orthopaedic Research, 2003, 21, 1107-1112.	2.3	130
75	A Comparison of the Physical Behavior of Normal Articular Cartilage and the Arthroplasty Surface. Journal of Bone and Joint Surgery - Series A, 1972, 54, 147-160.	3.0	130
76	Effect of Growth Factors on the Proliferation of Ligament Fibroblasts from Skeletally Mature Rabbits. Connective Tissue Research, 1997, 36, 1-8.	2.3	128
77	Determination of the in situ loads on the human anterior cruciate ligament. Journal of Orthopaedic Research, 1993, 11, 686-695.	2.3	126
78	The Effects of Rigidity of Internal Fixation Plates on Long Bone Remodeling: <i>A Bio Mechanical and Quantitative Histological Study</i> . Acta Orthopaedica, 1976, 47, 241-249.	1.4	124
79	Injury and repair of the musculoskeletal soft tissues. Savannah, Georgia, June 18-20, 1987. Journal of Orthopaedic Research, 1988, 6, 907-931.	2.3	123
80	Inflammatory Response of Human Tendon Fibroblasts to Cyclic Mechanical Stretching. American Journal of Sports Medicine, 2004, 32, 435-440.	4.2	122
81	Evaluation of a new injury model to study medial collateral ligament healing: Primary repair versus nonoperative treatment. Journal of Orthopaedic Research, 1991, 9, 516-528.	2.3	121
82	Shoulder muscle forces and tendon excursions during glenohumeral abduction in the scapular plane. Journal of Shoulder and Elbow Surgery, 1995, 4, 199-208.	2.6	121
83	Relative contribution of the ACL, MCL, and bony contact to the anterior stability of the knee. Knee Surgery, Sports Traumatology, Arthroscopy, 1999, 7, 93-97.	4.2	121
84	A New Method for Determining Cross-Sectional Shape and Area of Soft Tissues. Journal of Biomechanical Engineering, 1988, 110, 110-114.	1.3	119
85	Effect of combined axial compressive and anterior tibial loads onin situ forces in the anterior cruciate ligament: A porcine study. Journal of Orthopaedic Research, 1998, 16, 122-127.	2.3	117
86	The Effects of a Popliteus Muscle Load on In Situ Forces in the Posterior Cruciate Ligament and on Knee Kinematics. American Journal of Sports Medicine, 1998, 26, 669-673.	4.2	117
87	The use of porcine small intestinal submucosa to enhance the healing of the medial collateral ligament—a functional tissue engineering study in rabbits. Journal of Orthopaedic Research, 2004, 22, 214-220.	2.3	116
88	Forces and moments in six-DOF at the human knee joint: Mathematical description for control. Journal of Biomechanics, 1996, 29, 1577-1585.	2.1	114
89	In-situ force in the medial and lateral structures of intact and ACL-deficient knees. Journal of Orthopaedic Science, 2000, 5, 567-571.	1.1	114
90	Biology and Biomechanics of the Anterior Cruciate Ligament. Clinics in Sports Medicine, 1993, 12, 637-670.	1.8	114

#	Article	IF	CITATIONS
91	The Use of a Laser Micrometer System to Determine the Cross-Sectional Shape and Area of Ligaments: A Comparative Study With Two Existing Methods. Journal of Biomechanical Engineering, 1990, 112, 426-431.	1.3	106
92	Screw Fixation in the Human Sacrum. Spine, 1992, 17, S196-S203.	2.0	104
93	The effects of frequency and duration of controlled passive mobilization on tendon healing. Journal of Orthopaedic Research, 1991, 9, 705-713.	2.3	102
94	Influences of flexor sheath continuity and early motion on tendon healing in dogs. Journal of Hand Surgery, 1990, 15, 69-77.	1.6	100
95	Large deformation nonhomogeneous and directional properties of articular cartilage in uniaxial tension. Journal of Biomechanics, 1979, 12, 437-446.	2.1	99
96	Mechanical behavior of two hamstring graft constructs for reconstruction of the anterior cruciate ligament. Journal of Orthopaedic Research, 2000, 18, 456-461.	2.3	96
97	The effects of increased tension on healing medial collateral ligaments. American Journal of Sports Medicine, 1991, 19, 347-354.	4.2	95
98	Biomechanical function of the human anterior cruciate ligament. Arthroscopy - Journal of Arthroscopic and Related Surgery, 1994, 10, 140-147.	2.7	93
99	In situ force distribution in the glenohumeral joint capsule during anterior-posterior loading. Journal of Orthopaedic Research, 1999, 17, 769-776.	2.3	93
100	The effects of multiple freeze–thaw cycles on the biomechanical properties of the human boneâ€patellar tendonâ€bone allograft. Journal of Orthopaedic Research, 2011, 29, 1193-1198.	2.3	93
101	Role of fascia in maintenance of muscle tension and pressure. Journal of Applied Physiology, 1981, 51, 317-320.	2.5	92
102	Tensile properties of the interosseous membrane of the human forearm. Journal of Orthopaedic Research, 1996, 14, 842-845.	2.3	92
103	Tensile properties of the superior glenohumeral and coracohumeral ligaments. Journal of Shoulder and Elbow Surgery, 1996, 5, 249-254.	2.6	91
104	In situforces in the posterolateral structures of the knee under posterior tibial loading in the intact and posterior cruciate ligament-deficient knee. Journal of Orthopaedic Research, 1998, 16, 675-681.	2.3	91
105	Biomechanics and anterior cruciate ligament reconstruction. Journal of Orthopaedic Surgery and Research, 2006, 1, 2.	2.3	91
106	Comparative study of the size and shape of human anterior and posterior cruciate ligaments. Journal of Orthopaedic Research, 1995, 13, 429-434.	2.3	89
107	Type V collagen is increased during rabbit medial collateral ligament healing. Knee Surgery, Sports Traumatology, Arthroscopy, 2000, 8, 281-285.	4.2	89
108	Role of biomechanics in the understanding of normal, injured, and healing ligaments and tendons. BMC Sports Science, Medicine and Rehabilitation, 2009, 1, 9.	1.7	89

#	Article	IF	CITATIONS
109	Quantitative histological evaluation of early fracture healing of cortical bones immobilized by stainless steel and composite plates. Calcified Tissue Research, 1975, 19, 27-37.	1.3	88
110	A new dynamic testing apparatus to study glenohumeral joint motion. Journal of Biomechanics, 1995, 28, 869-874.	2.1	88
111	Experimental investigation of reaction forces at the glenohumeral joint during active abduction. Journal of Shoulder and Elbow Surgery, 2000, 9, 409-417.	2.6	88
112	A comparative evaluation of the mechanical properties of the rabbit medial collateral and anterior cruciate ligaments. Journal of Biomechanics, 1992, 25, 377-386.	2.1	87
113	Differences in Torsional Joint Stiffness of the Knee between Genders. American Journal of Sports Medicine, 2006, 34, 765-770.	4.2	87
114	The effect of soft-tissue graft fixation in anterior cruciate ligament reconstruction on graft-tunnel motion under anterior tibial loading. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2002, 18, 960-967.	2.7	86
115	In vitro biomechanical analysis of suture methods for flexor tendon repair. Journal of Orthopaedic Research, 1993, 11, 603-611.	2.3	84
116	Early expression of marker genes in the rabbit medial collateral and anterior cruciate ligaments: The use of different viral vectors and the effects of injury. Journal of Orthopaedic Research, 1999, 17, 37-42.	2.3	83
117	Aging and sex-related changes in the biomechanical properties of the rabbit medial collateral ligament. Mechanisms of Ageing and Development, 1990, 56, 129-142.	4.6	82
118	Morphologic and biomechanical comparison of tendons used as free grafts. Journal of Hand Surgery, 1993, 18, 76-82.	1.6	82
119	Biomechanics of Knee Ligaments. Journal of Bone and Joint Surgery - Series A, 1993, 75, 1716-1727.	3.0	82
120	Effects of knee flexion on the structural properties of the rabbit femur-anterior cruciate ligament-tibia complex (FATC). Journal of Biomechanics, 1987, 20, 557-563.	2.1	81
121	Dynamic behavior of a biphasic cartilage model under cyclic compressive loading. Journal of Biomechanics, 1995, 28, 357-364.	2.1	81
122	Role of the forearm interosseous ligament: Is it more than just longitudinal load transfer?. Journal of Hand Surgery, 2000, 25, 683-688.	1.6	81
123	Biomechanics of knee ligament healing, repair and reconstruction. Journal of Biomechanics, 1997, 30, 431-439.	2.1	80
124	Use of robotic technology for diathrodial joint research. Journal of Science and Medicine in Sport, 1999, 2, 283-297.	1.3	79
125	Anterior cruciate ligament tunnel placement: Comparison of insertion site anatomy with the guidelines of a computer-assisted surgical system. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2003, 19, 154-160.	2.7	79
126	Biomechanical Comparison of Tibial Inlay versus Transtibial Techniques for Posterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 2004, 32, 587-593.	4.2	79

#	Article	IF	CITATIONS
127	The effect of initial graft tension on the biomechanical properties of a healing ACL replacement graft: A study in goats. Journal of Orthopaedic Research, 2003, 21, 708-715.	2.3	78
128	Gene Expression by Fibroblasts Seeded on Small Intestinal Submucosa and Subjected to Cyclic Stretching. Tissue Engineering, 2007, 13, 1313-1323.	4.6	78
129	Temperature Dependent Behavior of the Canine Medial Collateral Ligament. Journal of Biomechanical Engineering, 1987, 109, 68-71.	1.3	77
130	Effects of sectioning the posterolateral structures on knee kinematics and in situ forces in the posterior cruciate ligament. Knee Surgery, Sports Traumatology, Arthroscopy, 2000, 8, 93-98.	4.2	76
131	Cytokine-induced tendinitis: A preliminary study in rabbits. Journal of Orthopaedic Research, 1999, 17, 168-177.	2.3	71
132	Potential application of graphite fiber and methyl methacrylate resin composites as internal fixation plates. Journal of Biomedical Materials Research Part B, 1974, 8, 321-338.	3.1	70
133	The Effect of Knee Flexion Angle and Application of an Anterior Tibial Load at the Time of Graft Fixation on the Biomechanics of a Posterior Cruciate Ligament-Reconstructed Knee. American Journal of Sports Medicine, 2000, 28, 460-465.	4.2	70
134	A rat model to study the structural properties of the vagina and its supportive tissues. American Journal of Obstetrics and Gynecology, 2005, 192, 80-88.	1.3	70
135	Effects of Knee Flexion Angles for Graft Fixation on Force Distribution in Double-Bundle Anterior Cruciate Ligament Grafts. American Journal of Sports Medicine, 2006, 34, 577-585.	4.2	70
136	Mathematical model of the corneo-scleral shell as applied to intraocular pressure-volume relations and applanation tonometry. Annals of Biomedical Engineering, 1972, 1, 87-98.	2.5	67
137	Long-term effects of porcine small intestine submucosa on the healing of medial collateral ligament: A functional tissue engineering study. Journal of Orthopaedic Research, 2006, 24, 811-819.	2.3	67
138	Evaluation of the effect of joint constraints on thein situ force distribution in the anterior cruciate ligament. Journal of Orthopaedic Research, 1997, 15, 278-284.	2.3	66
139	Effect of the iliotibial band on knee biomechanics during a simulated pivot shift test. Journal of Orthopaedic Research, 2006, 24, 967-973.	2.3	66
140	Application of the u-p Finite Element Method to the Study of Articular Cartilage. Journal of Biomechanical Engineering, 1991, 113, 397-403.	1.3	65
141	Translation from Research to Applications. Tissue Engineering, 2006, 12, 3341-3364.	4.6	65
142	Knee Kinematic Profiles during Drop Landings. Medicine and Science in Sports and Exercise, 2011, 43, 533-541.	0.4	64
143	Measurements of Tibiofemoral Kinematics during Soft and Stiff Drop Landings Using Biplane Fluoroscopy. American Journal of Sports Medicine, 2011, 39, 1714-1723.	4.2	63
144	Interaction between the ACL graft and MCL in a combined ACL+MCL knee injury using a goat model. Acta Orthopaedica, 2000, 71, 387-393.	1.4	62

#	Article	IF	CITATIONS
145	Collagens in an adult bovine medial collateral ligament: Immunofluorescence localization by confocal microscopy reveals that type XIV collagen predominates at the ligament-bone junction. Matrix Biology, 1995, 14, 743-751.	3.6	61
146	Engineering the healing of the rabbit medial collateral ligament. Medical and Biological Engineering and Computing, 1998, 36, 359-364.	2.8	61
147	A rigid-body method for finding centers of rotation and angular displacements of planar joint motion. Journal of Biomechanics, 1987, 20, 715-721.	2.1	60
148	Ultrastructural morphometry of anterior cruciate and medial collateral ligaments: An experimental study in rabbits. Journal of Orthopaedic Research, 1992, 10, 96-103.	2.3	60
149	The Position of the Tibia during Graft Fixation Affects Knee Kinematics and Graft Forces for Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 2001, 29, 771-776.	4.2	59
150	An Evaluation of the Quasi-Linear Viscoelastic Properties of the Healing Medial Collateral Ligament in a Goat Model. Annals of Biomedical Engineering, 2004, 32, 329-335.	2.5	59
151	Fiber Kinematics of Small Intestinal Submucosa Under Biaxial and Uniaxial Stretch. Journal of Biomechanical Engineering, 2006, 128, 890-898.	1.3	59
152	Effects of Cell Seeding and Cyclic Stretch on the Fiber Remodeling in an Extracellular Matrix–Derived Bioscaffold. Tissue Engineering - Part A, 2009, 15, 957-963.	3.1	59
153	Skull Osteology As It Affects Halo Pin Placement in Children. Journal of Pediatric Orthopaedics, 1986, 6, 434-436.	1.2	58
154	Perichondrial autograft for articular cartilage Shear modulus of neocartilage studied in rabbits. Acta Orthopaedica, 1987, 58, 510-515.	1.4	58
155	Healing of the medial collateral ligament following a triad injury: A biomechanical and histological study of the knee in rabbits. Journal of Orthopaedic Research, 1992, 10, 485-495.	2.3	58
156	The effects of age on rabbit MCL fibroblast matrix synthesis in response to TGF-β1 or EGF. Mechanisms of Ageing and Development, 1997, 97, 121-130.	4.6	58
157	Biomechanical and Biochemical Changes in the Periarticular Connective Tissue During Contracture Development in the Immobilized Rabbit Knee. Connective Tissue Research, 1974, 2, 315-323.	2.3	57
158	Effects of Surgical Treatment and Immobilization on the Healing of the Medial Collateral Ligament: A Long-Term Multidisciplinary Study. Connective Tissue Research, 1990, 25, 13-26.	2.3	57
159	Viscoelastic shear properties of the equine medial meniscus. Journal of Orthopaedic Research, 1991, 9, 550-558.	2.3	57
160	Potential of healing a transected anterior cruciate ligament with genetically modified extracellular matrix bioscaffolds in a goat model. Knee Surgery, Sports Traumatology, Arthroscopy, 2012, 20, 1357-1365.	4.2	57
161	Precision of ACL Tunnel Placement Using Traditional and Robotic Techniques. Computer Aided Surgery, 2001, 6, 270-278.	1.8	55
162	Fate of donor bone marrow cells in medial collateral ligament after simulated autologous transplantation. Microscopy Research and Technique, 2002, 58, 39-44.	2.2	55

#	Article	IF	CITATIONS
163	BIOMECHANICAL PROPERTIES OF PERIPHERAL NERVES. Hand Clinics, 1996, 12, 195-204.	1.0	55
164	Immobilization of the knee joint alters the mechanical and ultrastructural properties of the rabbit anterior cruciate ligament. Journal of Orthopaedic Research, 1995, 13, 191-200.	2.3	54
165	Relaxation and Creep Quasilinear Viscoelastic Models for Normal Articular Cartilage. Journal of Biomechanical Engineering, 1984, 106, 159-164.	1.3	53
166	Treatment with Bioscaffold Enhances the the Fibril Morphology and the Collagen Composition of Healing Medial Collateral Ligament in Rabbits. Tissue Engineering, 2006, 12, 159-166.	4.6	53
167	Biomechanical Evaluation of the Quadriceps Tendon Autograft for Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 2014, 42, 723-730.	4.2	53
168	A Structural Model to Describe the Nonlinear Stress-Strain Behavior for Parallel-Fibered Collagenous Tissues. Journal of Biomechanical Engineering, 1989, 111, 361-363.	1.3	52
169	In Vivo Tibiofemoral Kinematics During 4 Functional Tasks of Increasing Demand Using Biplane Fluoroscopy. American Journal of Sports Medicine, 2012, 40, 170-178.	4.2	52
170	New experimental procedures to evaluate the biomechanical properties of healing canine medial collateral ligaments. Journal of Orthopaedic Research, 1987, 5, 425-432.	2.3	51
171	Healing of the medial collateral ligament after a combined medial collateral and anterior cruciate ligament injury and reconstruction of the anterior cruciate ligament: Comparison of repair and nonrepair of medial collateral ligament tears in rabbits. Journal of Orthopaedic Research, 1995, 13, 442-449.	2.3	51
172	Medial collateral knee ligament healing: Combined medial collateral and anterior cruciate ligament injuries studied in rabbits. Acta Orthopaedica, 1997, 68, 142-148.	1.4	51
173	Use of a bioscaffold to improve healing of a patellar tendon defect after graft harvest for ACL reconstruction: A study in rabbits. Journal of Orthopaedic Research, 2008, 26, 255-263.	2.3	51
174	Analysis of the corneo-scleral shell by the method of direct stiffness. Journal of Biomechanics, 1971, 4, 323-330.	2.1	50
175	Cartilage resurfacing of the rabbit knee: The use of an allogeneic demineralized bone matrix-autogeneic perichondrium composite implant. Acta Orthopaedica, 1990, 61, 201-206.	1.4	50
176	Current Concepts for Rehabilitation following Anterior Cruciate Ligament Reconstruction. Journal of Orthopaedic and Sports Physical Therapy, 1992, 15, 270-278.	3.5	50
177	Tensile properties of an anterior cruciate ligament graft after bone–patellar tendon–bone press-fit fixation. Knee Surgery, Sports Traumatology, Arthroscopy, 2003, 11, 68-74.	4.2	50
178	Biomechanics of the ACL: Measurements of in situ force in the ACL and knee kinematics. Knee, 1998, 5, 267-288.	1.6	49
179	In situforces in the human posterior cruciate ligament in response to muscle loads: A cadaveric study. Journal of Orthopaedic Research, 1999, 17, 763-768.	2.3	48
180	The physiological basis for application of controlled stress in the rehabilitation of flexor tendon injuries. Journal of Hand Therapy, 1989, 2, 66-70.	1.5	47

#	Article	IF	CITATIONS
181	Medial collateral ligament healing one year after a concurrent medial collateral ligament and anterior cruciate ligament injury: An interdisciplinary study in rabbits. Journal of Orthopaedic Research, 1996, 14, 223-227.	2.3	46
182	Evaluation of Knee Stability with Use of a Robotic System. Journal of Bone and Joint Surgery - Series A, 2009, 91, 78-84.	3.0	46
183	An interdisciplinary approach to evaluate the effect of internal fixation plate on long bone remodeling. Journal of Biomechanics, 1977, 10, 87-95.	2.1	45
184	Excursion of the flexor digitorum profundus tendon: A kinematic study of the human and canine digits. Journal of Orthopaedic Research, 1990, 8, 167-174.	2.3	45
185	Ultrastructural Differences Between the Cells of the Medial Collateral and the Anterior Cruciate Ligaments. Clinical Orthopaedics and Related Research, 1991, &NA, 279???286.	1.5	45
186	The Marshall R. Urist Young Investigator Award. Clinical Orthopaedics and Related Research, 1997, 345, 239???247.	1,5	45
187	Multi-directional strength and force envelope of the index finger. Clinical Biomechanics, 2003, 18, 908-915.	1.2	43
188	Structure and Function of the Healing Medial Collateral Ligament in a Goat Model. Annals of Biomedical Engineering, 2001, 29, 173-180.	2.5	42
189	The healing medial collateral ligament following a combined anterior cruciate and medial collateral ligament injury—a biomechanical study in a goat model. Journal of Orthopaedic Research, 2003, 21, 1124-1130.	2.3	42
190	Estimation of ACL forces by reproducing knee kinematics between sets of knees: A novel non-invasive methodology. Journal of Biomechanics, 2006, 39, 2371-2377.	2.1	41
191	Sustained pressurization of polymethylmethacrylate: A comparison of low- and moderate- viscosity bone cements. Journal of Orthopaedic Research, 1988, 6, 580-584.	2.3	40
192	Morphological and biomechanical evaluations of neocartilage from the repair of full-thickness articular cartilage defects using rib perichondrium autografts: A long-term study. Journal of Biomechanics, 1989, 22, 921-930.	2.1	40
193	Quantitative Analysis of Collagen Fibrils of Human Cruciate and Meniscofemoral Ligaments. Clinical Orthopaedics and Related Research, 1998, 357, 205-211.	1.5	40
194	Response of donor and recipient cells after transplantation of cells to the ligament and tendon. Microscopy Research and Technique, 2002, 58, 34-38.	2.2	40
195	Biomechanics of Initial Tibial Fixation in Posterior Cruciate Ligament Reconstruction. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2005, 21, 1164-1171.	2.7	40
196	Functional Tissue Engineering for Ligament Healing: Potential of Antisense Gene Therapy. Annals of Biomedical Engineering, 2004, 32, 342-351.	2.5	39
197	Biomechanical evaluation of using one hamstrings tendon for ACL reconstruction: a human cadaveric study. Knee Surgery, Sports Traumatology, Arthroscopy, 2010, 18, 11-19.	4.2	39
198	Determination of a Safe Range of Knee Flexion Angles for Fixation of the Grafts in Double-Bundle Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 2007, 35, 1513-1520.	4.2	38

#	Article	lF	CITATIONS
199	Effects of a bioscaffold on collagen fibrillogenesis in healing medial collateral ligament in rabbits. Journal of Orthopaedic Research, 2008, 26, 1098-1104.	2.3	38
200	Functional tissue engineering of ligament healing. BMC Sports Science, Medicine and Rehabilitation, 2010, 2, 12.	1.7	38
201	Medical collateral ligament healing subsequent to different treatment regimens. Journal of Applied Physiology, 1989, 66, 245-252.	2.5	36
202	A biomechanical and histological evaluation of the structure and function of the healing medial collateral ligament in a goat model. Knee Surgery, Sports Traumatology, Arthroscopy, 2003, 11, 155-162.	4.2	35
203	Tension patterns of the anteromedial and posterolateral grafts in a doubleâ€bundle anterior cruciate ligament reconstruction. Journal of Orthopaedic Research, 2009, 27, 879-884.	2.3	35
204	Histological and biomechanical assessment of articular cartilage from stored osteochondral shell allografts. Journal of Orthopaedic Research, 1989, 7, 637-644.	2.3	34
205	The development and validation of a charge-coupled device laser reflectance system to measure the complex cross-sectional shape and area of soft tissues. Journal of Biomechanics, 2006, 39, 3071-3075.	2.1	33
206	Experimental hemarthrosis in the knee of the mature canine. Arthritis and Rheumatism, 1976, 19, 59-67.	6.7	32
207	Measurement of Changes in Ligament Tension with Knee Motion and Skeletal Maturation. Journal of Biomechanical Engineering, 1990, 112, 46-51.	1.3	32
208	Injury and reconstruction of the anterior cruciate ligament and knee osteoarthritis. Osteoarthritis and Cartilage, 1999, 7, 110-121.	1.3	32
209	Antisense Oligonucleotides Reduce Synthesis of Procollagen α1 (V) Chain in Human Patellar Tendon Fibroblasts: Potential Application in Healing Ligaments and Tendons. Connective Tissue Research, 2003, 44, 167-172.	2.3	32
210	Biomechanical function of the posterior horn of the medial meniscus: a human cadaveric study. Journal of Orthopaedic Science, 2004, 9, 280-284.	1.1	32
211	A new methodology to measure load transfer through the forearm using multiple universal force sensors. Journal of Biomechanics, 1999, 32, 1331-1335.	2.1	31
212	Evaluation of one-, two-, and three-dimensional finite element and experimental models of internal fixation plates. Journal of Biomechanics, 1977, 10, 79-86.	2.1	30
213	Long-term storage effects on canine osteochondral allografts. Acta Orthopaedica, 1990, 61, 539-545.	1.4	30
214	Structural Behavior of the Halo Orthosis Pin - Bone Interface: Biomechanical Evaluation of Standard and Newly Designed Stainless Steel Halo Fixation Pins. Spine, 1986, 11, 977-981.	2.0	29
215	Healing of the rabbit medial collateral ligament following an o'donoghue triad injury: Effects of anterior cruciate ligament reconstruction. Journal of Orthopaedic Research, 1994, 12, 357-364.	2.3	28
216	Human anterior and posterior cervical longitudinal ligaments possess similar tensile properties. Journal of Orthopaedic Research, 1996, 14, 1005-1008.	2.3	28

#	Article	IF	CITATIONS
217	Effects of tenorraphy on the gliding function and tensile properties of partially lacerated canine digital flexor tendons. Journal of Hand Surgery, 1999, 24, 302-309.	1.6	28
218	Changes in Gene Expression of Matrix Constituents with Respect to Passage of Ligament and Tendon Fibroblasts. Annals of Biomedical Engineering, 2008, 36, 1927-1933.	2.5	28
219	Technical Aspects of Perichondrial Grafting in the Rabbit. European Surgical Research, 1984, 16, 322-328.	1.3	27
220	Significance of changes in the reference position for measurements of tibial translation and diagnosis of cruciate ligament deficiency. Journal of Orthopaedic Research, 2000, 18, 176-182.	2.3	27
221	Tensile properties of canine intrasynovial and extrasynovial flexor tendon autografts. Journal of Hand Surgery, 1997, 22, 457-463.	1.6	26
222	Positive Changes in Bone Marrow–Derived Cells in Response to Culture on an Aligned Bioscaffold. Tissue Engineering - Part A, 2008, 14, 1489-1495.	3.1	26
223	In-situ forces in the human posterior cruciate ligament in response to posterior tibial loading. Annals of Biomedical Engineering, 1996, 24, 193-197.	2.5	25
224	Assessment of Posterior Cruciate Ligament Graft Performance Using Robotic Technology. American Journal of Sports Medicine, 1996, 24, 824-828.	4.2	25
225	An Analytical Approach to Determine the in Situ Forces in the Glenohumeral Ligaments. Journal of Biomechanical Engineering, 1999, 121, 311-315.	1.3	25
226	Relationship of anterior knee laxity to knee translations during drop landings: a bi-plane fluoroscopy study. Knee Surgery, Sports Traumatology, Arthroscopy, 2011, 19, 653-662.	4.2	25
227	Suture augmentation following ACL injury to restore the function of the ACL, MCL, and medial meniscus in the goat stifle joint. Journal of Biomechanics, 2011, 44, 1530-1535.	2.1	25
228	Healing of the Goat Anterior Cruciate Ligament After a New Suture Repair Technique and Bioscaffold Treatment. Tissue Engineering - Part A, 2013, 19, 2292-2299.	3.1	24
229	Improvement of Accuracy in a High-Capacity, Six Degree-of-freedom Load Cell: Application to Robotic Testing of Musculoskeletal Joints. Annals of Biomedical Engineering, 1999, 27, 839-843.	2.5	23
230	Measurement of Posterior Tibial Translation in the Posterior Cruciate Ligament-Reconstructed Knee. American Journal of Sports Medicine, 2003, 31, 843-848.	4.2	23
231	Tensile properties of the medial patellofemoral ligament: The effect of specimen orientation. Journal of Biomechanics, 2014, 47, 592-595.	2.1	23
232	Positive effects of an extracellular matrix hydrogel on rat anterior cruciate ligament fibroblast proliferation and collagen mRNA expression. Journal of Orthopaedic Translation, 2015, 3, 114-122.	3.9	23
233	Biomechanics and Biochemistry of the Intervertebral Disks. Clinical Orthopaedics and Related Research, 1977, 129, 133.	1.5	22
234	A new approach to the design of internal fixation plates. Journal of Biomedical Materials Research Part B, 1983, 17, 427-439.	3.1	22

#	Article	IF	CITATIONS
235	The Effect of Pin Location on the Rigidity of the Halo Pin-Bone Interface. Neurosurgery, 1990, 26, 238-241.	1.1	22
236	The Effectiveness of Reconstruction of the Anterior Cruciate Ligament Using the Novel Knot/Press-Fit Technique. American Journal of Sports Medicine, 2005, 33, 856-863.	4.2	22
237	The effect of the point of application of anterior tibial loads on human knee kinematics. Journal of Biomechanics, 2000, 33, 1147-1152.	2.1	21
238	Accuracy of anterior cruciate ligament tunnel placement with an active robotic system: A cadaveric study. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2002, 18, 968-973.	2.7	21
239	Precision of ACL tunnel placement using traditional and robotic techniques. Computer Aided Surgery, 2001, 6, 270-278.	1.8	21
240	The Effect of Angled Insertion on Halo Pin Fixation. Spine, 1989, 14, 781-783.	2.0	20
241	Quantitative Anthropometry of the Subatlantal Cervical Longitudinal Ligaments. Spine, 1998, 23, 893-898.	2.0	20
242	A New Device to Measure the Structural Properties of the Femur-Anterior Cruciate Ligament-Tibia Complex. Journal of Biomechanical Engineering, 1989, 111, 350-354.	1.3	19
243	Relationship of knee shear force and extensor moment on knee translations in females performing drop landings: A biplane fluoroscopy study. Clinical Biomechanics, 2011, 26, 1019-1024.	1.2	19
244	Basic science of articular cartilage injury and repair. Operative Techniques in Sports Medicine, 1995, 3, 78-86.	0.3	18
245	Evaluation of bone tunnel placement for suture augmentation of an injured anterior cruciate ligament: Effects on joint stability in a goat model. Journal of Orthopaedic Research, 2010, 28, 1373-1379.	2.3	17
246	Alpha1,3-galactosyltransferase knockout does not alter the properties of porcine extracellular matrix bioscaffolds. Acta Biomaterialia, 2011, 7, 1719-1727.	8.3	17
247	Para-articular connective tissue in osteoarthritis. Seminars in Arthritis and Rheumatism, 1989, 18, 41-50.	3.4	16
248	Effect of Arthroscopic Procedures on the Acromioclavicular Joint. Clinical Orthopaedics and Related Research, 2003, 406, 89-96.	1.5	16
249	Contribution of biomechanics, orthopaedics and rehabilitation: The past, present and future. Journal of the Royal College of Surgeons of Edinburgh, 2004, 2, 125-136.	1.8	16
250	Structural response of relaxed and constricted arterioles. Journal of Biomechanics, 1968, 1, 259-270.	2.1	15
251	Bundle pattern of the flexor digitorum profundus tendon in zone II of the hand: A quantitative assessment of the size of a laceration. Journal of Hand Surgery, 1996, 21, 978-983.	1.6	15
252	Fiber orientation of the transverse carpal ligament. Clinical Anatomy, 2012, 25, 478-482.	2.7	15

#	Article	IF	CITATIONS
253	Comparison of Stainless Steel and Composite Plates in the Healing of Diaphyseal Osteotomies of the Dog Radius: Report on a Short Term Study. Orthopedic Clinics of North America, 1976, 7, 223-229.	1.2	15
254	Biologic Intervention in Ligament Healing. Sports Medicine and Arthroscopy Review, 1998, 6, 74???82.	2.3	14
255	High knee valgus in female subjects does not yield higher knee translations during drop landings: A biplane fluoroscopic study. Journal of Orthopaedic Research, 2013, 31, 257-267.	2.3	13
256	Histological characteristics of ligament healing after bio-enhanced repair of the transected goat ACL. Journal of Experimental Orthopaedics, 2015, 2, 4.	1.8	12
257	Magnesium ring device to restore function of a transected anterior cruciate ligament in the goat stifle joint. Journal of Orthopaedic Research, 2016, 34, 2001-2008.	2.3	12
258	Acute hemarthrosis: A histological, biochemical, and biomechanical correlation of early effects on the anterior cruciate ligament in a rabbit model. Journal of Orthopaedic Research, 1990, 8, 548-554.	2.3	11
259	Design of a new magnesium-based anterior cruciate ligament interference screw using finite element analysis. Journal of Orthopaedic Translation, 2020, 20, 25-30.	3.9	11
260	Simultaneous measurements of strains on two surfaces of tendons and ligaments. Journal of Biomechanics, 1988, 21, 511-514.	2.1	10
261	A subject-specific finite element model of the anterior cruciate ligament. , 2008, 2008, 891-4.		10
262	Tissue engineering: use of scaffolds for ligament and tendon healing and regeneration. Knee Surgery, Sports Traumatology, Arthroscopy, 2009, 17, 559-560.	4.2	10
263	Anatomy and biomechanics of theposterior cruciate ligament and posterolateral corner. Operative Techniques in Sports Medicine, 2001, 9, 39-46.	0.3	9
264	Value of Hyaluronic Acid in the Prevention of Contracture Formation. Clinical Orthopaedics and Related Research, 1985, &NA, 306???311.	1.5	8
265	Evaluation of a magnesium ring device for mechanical augmentation of a ruptured ACL: Finite element analysis. Clinical Biomechanics, 2019, 68, 122-127.	1.2	8
266	Downregulation of Human Type III Collagen Gene Expression by Antisense Oligodeoxynucleotide. Tissue Engineering, 2005, 11, 1429-1435.	4.6	7
267	Anatomical Double-Bundle Anterior Cruciate Ligament Reconstruction after Valgus High Tibial Osteotomy. American Journal of Sports Medicine, 2006, 34, 961-967.	4.2	7
268	The importance of position and path repeatability on force at the knee during six-DOF joint motion. Medical Engineering and Physics, 2009, 31, 553-557.	1.7	7
269	The effects of proximal load on the excursion of autogenous flexor tendon grafts. Journal of Hand Surgery, 1998, 23, 285-289.	1.6	6
270	Use of robotic technology to study the biomechanics of ligaments and their replacements. Operative Techniques in Orthopaedics, 2000, 10, 87-91.	0.1	6

#	Article	IF	CITATIONS
271	Functional Tissue Engineering of Ligament and Tendon Injuries. , 2011, , 997-1021.		6
272	Functional Tissue Engineering of Ligament and Tendon Injuries. , 2019, , 1179-1198.		6
273	Effect of arthroscopic procedures on the acromioclavicular joint. Clinical Orthopaedics and Related Research, 2003, , 89-96.	1.5	6
274	Basic Science of Ligament Healing:. Sports Medicine and Arthroscopy Review, 2005, 13, 161-169.	2.3	5
275	A Model of Stress and Strain in the Interosseous Ligament of the Forearm Based on Fiber Network Theory. Journal of Biomechanical Engineering, 2006, 128, 725-732.	1.3	5
276	The Effect of Delayed Internal Fixation on Healing of the Osteotomized Dog Radius. Clinical Orthopaedics and Related Research, 1982, &NA, 254???260.	1.5	4
277	The contribution of the anterior cruciate ligament to knee joint kinematics: Evaluation of its in situ forces using a robot/universal force-moment sensor test system. Journal of Orthopaedic Science, 1996, 1, 335-347.	1.1	4
278	Anatomical and Biomechanical Considerations of the PCL. Journal of Sport Rehabilitation, 1999, 8, 260-278.	1.0	4
279	Ligament Healing: Present Status and the Future of Functional Tissue Engineering. , 2003, , 17-34.		4
280	Experimental and Computational Modeling of Joint and Ligament Mechanics. Journal of Applied Biomechanics, 2004, 20, 450-474.	0.8	4
281	Future of Orthopaedic Sports Medicine and Soft Tissue Healing: The Important Role of Engineering. Cellular and Molecular Bioengineering, 2009, 2, 448-461.	2.1	4
282	Reliability after repeated use of a torque screwdriver employed for halo pin fixation. Journal of Orthopaedic Research, 1985, 3, 121-123.	2.3	3
283	A novel methodology to reproduce previously recorded six-degree of freedom kinematics on the same diarthrodial joint. Journal of Biomechanics, 2006, 39, 1914-1923.	2.1	3
284	The effects of geometry and fiber bundle orientation on the finite element modeling of the anterior cruciate ligament. , 2008, 2008, 899-902.		3
285	Functional Tissue Engineering of Ligament and Tendon Injuries. , 2008, , 1206-1231.		3
286	A Tribute to Our Centenarian Yuan-Cheng Fung: Father of Modern Biomechanics. Journal of Biomechanical Engineering, 2019, 141, .	1.3	3
287	Forces and moments in six-dof at the human knee joint: Mathematical description for control. Journal of Biomechanics, 1996, 29, 1577-1585.	2.1	3
288	Clinical Decision Making Based on Evidence. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2009, 25, 224.	2.7	2

#	Article	IF	CITATIONS
289	Tissue Engineering of Ligament Healing. , 2000, , 174-195.		2
290	Ligament and Tendon Enthesis: Anatomy and Mechanics. , 2013, , 69-89.		2
291	Contribution of biomechanics to clinical practice in orthopaedics. , 2004, 2004, 5455.		1
292	Anatomy and Biomechanics of the Posterior Cruciate Ligament. , 2001, , 3-22.		1
293	Orthopaedic Research in the Year 2020. , 2012, , 1209-1215.		1
294	Biomechanics of the Posterior Cruciate Ligament-Deficient Knee. Techniques in Orthopaedics, 2001, 16, 109-118.	0.2	1
295	Estimation of ACL Forces Utilizing a Novel Non-Invasive Methodology That Reproduces Knee Kinematics Between Sets of Knees. , 2003, , .		1
296	Anatomy and Biomechanics of the Human Posterior Cruciate Ligament. , 1994, , 200-214.		1
297	Biorheology of soft tissues: The need for interdisciplinary studies1. Biorheology, 1980, 17, 39-43.	0.4	0
298	Evaluation of Reconstituted Collagen Tape as a Model for Chemically Modified Soft Tissues. Biomaterials, Medical Devices, and Artificial Organs, 1981, 9, 37-46.	0.3	0
299	A New Femoral Component Design Based on the Trabecular Systems of the Proximal Femur. Biomaterials, Medical Devices, and Artificial Organs, 1983, 11, 39-50.	0.3	0
300	Effect of immobilization and remobilization on the properties of the medial collateral ligaments. Journal of Biomechanics, 1984, 17, 871.	2.1	0
301	Functional adaptation of cortical bone, tendons and ligaments. Journal of Biomechanics, 1985, 18, 516.	2.1	0
302	The effect of epiphyseal closure on ligament in-situ stresses and strains. Journal of Biomechanics, 1988, 21, 868.	2.1	0
303	Dr. Yasuyuki Seguchi. Journal of Biomechanical Engineering, 1990, 112, 369-370.	1.3	0
304	THE EFFECTS OF GROWTH FACTORS ON PROLIFERATION AND MATRIX SYNTHESIS OF FIBROBLASTS FROM GOAT MEDIAL COLLATERAL LIGAMENT. Journal of Musculoskeletal Research, 2000, 04, 257-264.	0.2	0
305	The Effect of Random Skin Motion on Knee Kinematics Calculated With Surface Markers: A Comparison of Three Marker Sets. , 2003, , 241.		0
306	Basic Science of Ligaments and Tendons Related to Rehabilitation. , 2004, , 1-14.		0

#	Article	IF	CITATIONS
307	Summary and Future Directions. Sports Medicine and Arthroscopy Review, 2005, 13, 177-183.	2.3	Ο
308	Validation of a High-Payload Robotic/UFS Testing System for Studying of Joint Motion. , 2007, , 639.		0
309	The Assumption of a Negligible Preload on the Determination of Viscoelastic Properties Based on the Quasi-linear Viscoelastic (QLV) Theory. , 2007, , .		0
310	The Mechanical and Viscoelastic Properties of the Healing Rabbit Patellar Tendon. , 2007, , 895.		0
311	Contribution of Biomechanics to Orthopaedics and Rehabilitation. Journal of Biomechanics, 2007, 40, S6.	2.1	Ο
312	Regeneration of Ligaments and Tendons With ECM Bioscaffolds. , 2008, , .		0
313	Effects of Tunnel Location for Suture Augmentation Following Anterior Cruciate Ligament Injury. , 2009, , .		0
314	Use of Extracellular Matrix Bioscaffolds to Enhance ACL Healing: A Multidisciplinary Approach in a Goat Model. , 2010, , .		0
315	Measuring In Vivo Joint Motion and Ligament Function: New Developments. , 2015, , 21-31.		0
316	Review of Clancy's article on anterior and posterior cruciate ligament reconstruction in rhesus monkeys. Journal of ISAKOS, 2016, 1, 53-60.	2.3	0
317	In Memoriam of Yuan-Cheng "Bert―Fung. Journal of Biomechanics, 2020, 110, 109911.	2.1	Ο
318	Ligaments of the Knee in Sports Injuries and Rehabilitation. , 2001, , 1-10.		0
319	Fiber Kinematics of Small Intestinal Submucosa Subjected to Biaxial Stretch. , 2003, , .		Ο
320	Reproducing the Motion of a Diarthrodial Joint During a Clinical Examination Using Robotic Technology. , 2003, , .		0
321	The Effects of Refreezing on the Tensile Properties of the Medial Collateral Ligament-Bone Complex: A Rabbit Model. , 2003, , .		0
322	Development of a Novel Model System to Study Remodeling of ECM Scaffolds in Response to Cyclic Stretching. , 2003, , .		0
323	Biomechanics of Ligaments: From Molecular Biology to Joint Function. , 2003, , 13-35.		0
324	Treatment with Bioscaffold Enhances the the Fibril Morphology and the Collagen Composition of Healing Medial Collateral Ligament in Rabbits. Tissue Engineering, 2006, .	4.6	0

#	Article	IF	CITATIONS
325	Functional Tissue Engineering of Patellar Tendon Healing. Medicine and Science in Sports and Exercise, 2006, 38, 71-72.	0.4	0
326	Biomechanical Variation of Double-Bundle Anterior Cruciate Ligament Reconstruction. , 2012, , 355-361.		0
327	Measuring In Vivo Joint Motion and Ligament Function: New Developments. , 2014, , 1-12.		Ο
328	Orthopedic Research in the Year 2025. , 2014, , 1-16.		0
329	Orthopedic Research in the Year 2025. , 2015, , 3203-3216.		Ο
330	The Use of a Large Animal Model and Robotic Technology to Validate New Biotherapies for ACL Healing. , 2017, , 185-196.		0
331	Biological Responses of Fibroblasts to Cyclic Stretching: A Novel Culture Model Study. , 2000, , .		0