Pedro Serra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9206484/publications.pdf

Version: 2024-02-01

516710 477307 33 868 16 29 h-index citations g-index papers 33 33 33 584 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Viroids: Survivors from the RNA World?. Annual Review of Microbiology, 2014, 68, 395-414.	7.3	142
2	Citrus viroid V: Molecular characterization and synergistic interactions with other members of the genus Apscaviroid. Virology, 2008, 370, 102-112.	2.4	68
3	Viroids: From Genotype to Phenotype Just Relying on RNA Sequence and Structural Motifs. Frontiers in Microbiology, 2012, 3, 217.	3.5	68
4	Viroids and Hepatitis Delta Virus. Seminars in Liver Disease, 2012, 32, 201-210.	3.6	63
5	Mechanical Transmission of Citrus Viroids. Plant Disease, 2005, 89, 749-754.	1.4	46
6	Effect of temperature on RNA silencing of a negativeâ€stranded RNA plant virus: <i>Citrus psorosis virus</i> . Plant Pathology, 2010, 59, 982-990.	2.4	43
7	Apple hammerhead viroid-like RNA is a bona fide viroid: Autonomous replication and structural features support its inclusion as a new member in the genus Pelamoviroid. Virus Research, 2018, 249, 8-15.	2.2	43
8	A single nucleotide change in Hop stunt viroid modulates citrus cachexia symptoms. Virus Research, 2008, 138, 130-134.	2.2	41
9	Citrus viroid V: Occurrence, Host Range, Diagnosis, and Identification of New Variants. Phytopathology, 2008, 98, 1199-1204.	2.2	40
10	Dahlia latent viroid: a recombinant new species of the family Pospiviroidae posing intriguing questions about its origin and classification. Journal of General Virology, 2013, 94, 711-719.	2.9	40
11	A novel hybridization approach for detection of citrus viroids. Molecular and Cellular Probes, 2009, 23, 95-102.	2.1	27
12	Viroid pathogenesis: a critical appraisal of the role of RNA silencing in triggering the initial molecular lesion. FEMS Microbiology Reviews, 2020, 44, 386-398.	8.6	26
13	Molecular and phylogenetic identification of unique isolates of hammerhead viroid-like RNA from â€~Pacific Gala' apple (<i>Malus domestica</i>) in Canada. Canadian Journal of Plant Pathology, 2017, 39, 342-353.	1.4	22
14	Virus-Viroid Interactions: Citrus Tristeza Virus Enhances the Accumulation of Citrus Dwarfing Viroid in Mexican Lime via Virus-Encoded Silencing Suppressors. Journal of Virology, 2014, 88, 1394-1397.	3.4	21
15	How sequence variants of a plastid-replicating viroid with one single nucleotide change initiate disease in its natural host. RNA Biology, 2019, 16, 906-917.	3.1	19
16	Two nucleotide positions in the <i>Citrus exocortis viroid</i> RNA associated with symptom expression in Etrog citron but not in experimental herbaceous hosts. Molecular Plant Pathology, 2011, 12, 203-208.	4.2	17
17	Molecular characterization of CEVd strains that induce different phenotypes in Gynura aurantiaca: structure-pathogenicity relationships. Archives of Virology, 2007, 152, 1283-1294.	2.1	15
18	Molecular and biological characterization of natural variants of Citrus dwarfing viroid. Archives of Virology, 2009, 154, 1329-1334.	2.1	15

#	Article	IF	CITATIONS
19	A pospiviroid from symptomless portulaca plants closely related to iresine viroid 1. Virus Research, 2015, 205, 22-26.	2.2	14
20	Symptomatic plant viroid infections in phytopathogenic fungi: A request for a critical reassessment. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10126-10128.	7.1	14
21	Effect of a Field-Source Mixture of Citrus Viroids on the Performance of †Nules†Clementine and †Navelina†Sweet Orange Trees Grafted on Carrizo Citrange. Plant Disease, 2009, 93, 699-707.	1.4	13
22	Degradome Analysis of Tomato and Nicotiana benthamiana Plants Infected with Potato Spindle Tuber Viroid. International Journal of Molecular Sciences, 2021, 22, 3725.	4.1	13
23	A scenario for the emergence of protoviroids in the RNA world and for their further evolution into viroids and viroid-like RNAs by modular recombinations and mutations. Virus Evolution, 2022, 8, veab107.	4.9	13
24	Effects of resistance of <i>Eremocitrus glauca</i> and <i>Microcitrus australis</i> to viroid infection: replication, accumulation and longâ€distance movement of six citrus viroids. Plant Pathology, 2010, 59, 413-421.	2.4	10
25	Phloem restriction of viroids in three citrus hosts is overcome by grafting with Etrog citron: potential involvement of a translocatable factor. Journal of General Virology, 2015, 96, 2405-2410.	2.9	8
26	Interference between variants of peach latent mosaic viroid reveals novel features of its fitness landscape: implications for detection. Scientific Reports, 2017, 7, 42825.	3.3	8
27	An artificial chimeric derivative of $\langle i \rangle$ Citrus viroid $V \langle i \rangle$ involves the terminal left domain in pathogenicity. Molecular Plant Pathology, 2009, 10, 515-522.	4.2	7
28	First Report of Citrus viroid V in Moro Blood Sweet Orange in Iran. Plant Disease, 2010, 94, 129-129.	1.4	7
29	Chrysanthemum Chlorotic Mottle Viroid. , 2017, , 331-338.		3
30	Iresine Viroid 1 and a Potential New Pospiviroid From Portulaca., 2017,, 191-198.		1
31	Revisiting the cysteine-rich proteins encoded in the $3\hat{a}\in\mathbb{M}$ -proximal open reading frame of the positive-sense single-stranded RNA of some monopartite filamentous plant viruses: functional dissection of p15 from grapevine virus B. Archives of Virology, 2020, 165, 2229-2239.	2.1	1
32	Dahlia Latent Viroid., 2017,, 211-216.		0
33	Gel Blot Hybridization for Viroids. Methods in Molecular Biology, 2022, 2316, 97-109.	0.9	0