Neila Trifi-Farah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9205868/publications.pdf

Version: 2024-02-01

687363 713466 33 492 13 21 citations h-index g-index papers 33 33 33 574 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Loss of genetic diversity as a signature of apricot domestication and diffusion into the Mediterranean Basin. BMC Plant Biology, 2012, 12, 49.	3.6	87
2	Influence of climate variation on phenolic composition and antioxidant capacity of Medicago minima populations. Scientific Reports, 2020, 10, 8293.	3. 3	52
3	Genetic Structure of a Worldwide Germplasm Collection of Prunus armeniaca L. Reveals Three Major Diffusion Routes for Varieties Coming From the Species' Center of Origin. Frontiers in Plant Science, 2020, 11, 638.	3.6	36
4	Impact of Mapped SSR Markers on the Genetic Diversity of Apricot (Prunus armeniaca L.) in Tunisia. Plant Molecular Biology Reporter, 2010, 28, 578-587.	1.8	31
5	An insight from tolerance to salinity stress in halophyte Portulaca oleracea L.: Physio-morphological, biochemical and molecular responses. Ecotoxicology and Environmental Safety, 2019, 172, 45-52.	6.0	28
6	Genetic relationships between local North African apricot (Prunus armeniaca L.) germplasm and recently introduced varieties. Scientia Horticulturae, 2013, 152, 61-69.	3.6	25
7	Genetic diversity of Sulla genus (Hedysarea) and related species using Inter-simple Sequence Repeat (ISSR) markers. Biochemical Systematics and Ecology, 2007, 35, 682-688.	1.3	23
8	Using AFLP Markers for the Analysis of the Genetic Diversity of Apricot Cultivars in Tunisia. Journal of the American Society for Horticultural Science, 2008, 133, 204-212.	1.0	22
9	Exploration of intra- and inter-population genetic diversity in Hedysarum coronarium L. by AFLP markers. Genetic Resources and Crop Evolution, 2005, 52, 277-284.	1.6	19
10	Grafting versus seed propagated apricot populations: two main gene pools in Tunisia evidenced by SSR markers and model-based Bayesian clustering. Genetica, 2010, 138, 1023-1032.	1.1	18
11	Genetic diversity and differentiation of grafted and seed propagated apricot (Prunus armeniaca L.) in the Maghreb region. Scientia Horticulturae, 2012, 142, 7-13.	3.6	17
12	Phylogeny of Mediterranean <i>Lathyrus</i> species using Inter Simple Sequence Repeats markers. Acta Botanica Gallica, 2014, 161, 91-98.	0.9	17
13	Variability of morphological characters among Tunisian apricot germplasm. Scientia Horticulturae, 2014, 179, 328-339.	3.6	14
14	SSRs transferability and genetic diversity of Tunisian Festuca arundinacea and Lolium perenne. Biochemical Systematics and Ecology, 2011, 39, 79-87.	1.3	11
15	Assessment of the genetic variation in alfalfa genotypes using SRAP markers for breeding purposes. Chilean Journal of Agricultural Research, 2017, 77, 332-339.	1.1	11
16	Molecular diversity and phylogeny of Tunisian Prunus armeniaca L. by evaluating three candidate barcodes of the chloroplast genome. Scientia Horticulturae, 2019, 245, 99-106.	3.6	10
17	Comparative analysis of traditional and modern apricot breeding programs: A case of study with Spanish and Tunisian apricot breeding germplasm. Spanish Journal of Agricultural Research, 2016, 14, e0706.	0.6	10
18	Morphological Traits and Phenolic Compounds in Tunisian Wild Populations and Cultivated Varieties of Portulaca oleracea L Agronomy, 2020, 10, 948.	3.0	8

#	Article	IF	CITATIONS
19	Phylogenetic relationships of Mediterranean Hedysarea species assessed by AFLP markers. Plant Systematics and Evolution, 2012, 298, 51-58.	0.9	7
20	Evolutionary and demographic history among Maghrebian Medicago species (Fabaceae) based on the nucleotide sequences of the chloroplast DNA barcode trnH-psbA. Biochemical Systematics and Ecology, 2014, 55, 296-304.	1.3	7
21	Population structure and core collection construction of apricot (<i>Prunus armeniaca</i> L.) in North Africa based on microsatellite markers. Plant Genetic Resources: Characterisation and Utilisation, 2017, 15, 21-28.	0.8	7
22	Mediterranean Hedysarum phylogeny by transferable microsatellites from Medicago. Biochemical Systematics and Ecology, 2013, 50, 129-135.	1.3	6
23	Utility of ITS2 sequence data of nuclear ribosomal DNA: Molecular evolution and phylogenetic reconstruction of Lathyrus spp Scientia Horticulturae, 2015, 194, 313-319.	3.6	5
24	Self-(in)compatibility analysis of apricot germplasm in Tunisia: S-RNase allele identification, S-genotype determination and crop history evolution. Scientia Horticulturae, 2021, 276, 109758.	3.6	5
25	Sequence divergence of microsatellites for phylogeographic assessment of Moroccan Medicago species. Genetics and Molecular Research, 2014, 13, 1548-1562.	0.2	4
26	Quantitative trait loci (QTLs) identification and the transmission of resistance to powdery mildew in apricot. Euphytica, 2016, 211, 245-254.	1.2	3
27	The evolution of rbcL: A methodology to follow the evolution patterns of Medicago and Sulla (Fabaceae) genera. Biochemical Systematics and Ecology, 2014, 57, 33-39.	1.3	2
28	Genetic diversity in Tunisian perennial forage grasses revealed by inter-simple sequence repeats markers. Biochemical Systematics and Ecology, 2016, 66, 154-160.	1.3	2
29	Integrated analysis for identifying <i>Portulaca oleracea < /i> and its sub-species based on chloroplastic and nuclear DNA barcoding. Plant Biosystems, 2019, 153, 25-31.</i>	1.6	2
30	Chloroplastic and nuclear diversity of endemic Prunus armeniaca L. species in the oasis agroecosystems. Genetica, 2021, 149, 239-251.	1.1	2
31	Chloroplast DNA sequence data provides new insights into genetic diversity and phylogenetic relationships of Tunisian apricot germplasm. Scientia Horticulturae, 2014, 178, 241-247.	3.6	1
32	New morphotypes structuring Medicago minima (L.) Bartal. populations in various climate environments. Genetic Resources and Crop Evolution, 2020, 67, 1867-1883.	1.6	0
33	Mitochondrial NAD7 intronic region as barcoding marker for genetic diversity assessment of six Lathyrus species. Botany Letters, 0 , 1 - 6 .	1.4	0