Marcus Gallagher-Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9205632/publications.pdf

Version: 2024-02-01

471509 501196 33 1,238 17 28 g-index citations h-index papers 37 37 37 2142 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Analysis of Global and Site-Specific Radiation Damage in Cryo-EM. Structure, 2018, 26, 759-766.e4.	3.3	152
2	Single-shot three-dimensional structure determination of nanocrystals with femtosecond X-ray free-electron laser pulses. Nature Communications, 2014, 5, 4061.	12.8	91
3	A molecular cross-linking approach for hybrid metal oxides. Nature Materials, 2018, 17, 341-348.	27.5	90
4	Sub-ångström cryo-EM structure of a prion protofibril reveals a polar clasp. Nature Structural and Molecular Biology, 2018, 25, 131-134.	8.2	87
5	Correlative 3D x-ray fluorescence and ptychographic tomography of frozen-hydrated green algae. Science Advances, 2018, 4, eaau4548.	10.3	79
6	Cryo-EM structure of a human prion fibril with a hydrophobic, protease-resistant core. Nature Structural and Molecular Biology, 2020, 27, 417-423.	8.2	73
7	Imaging Fully Hydrated Whole Cells by Coherent X-Ray Diffraction Microscopy. Physical Review Letters, 2013, 110, 098103.	7.8	71
8	GENFIRE: A generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging. Scientific Reports, 2017, 7, 10409.	3.3	71
9	Macromolecular structures probed by combining single-shot free-electron laser diffraction with synchrotron coherent X-ray imaging. Nature Communications, 2014, 5, 3798.	12.8	61
10	In situ coherent diffractive imaging. Nature Communications, 2018, 9, 1826.	12.8	52
11	A benchmarked protein microarray-based platform for the identification of novel low-affinity extracellular protein interactions. Analytical Biochemistry, 2012, 424, 45-53.	2.4	50
12	Multiple application X-ray imaging chamber for single-shot diffraction experiments with femtosecond X-ray laser pulses. Journal of Applied Crystallography, 2014, 47, 188-197.	4.5	49
13	Nanoscale mosaicity revealed in peptide microcrystals by scanning electron nanodiffraction. Communications Biology, 2019, 2, 26.	4.4	47
14	Direct observation of picosecond melting and disintegration of metallic nanoparticles. Nature Communications, 2019, 10, 2411.	12.8	43
15	Human COQ10A and COQ10B are distinct lipid-binding START domain proteins required for coenzyme Q function. Journal of Lipid Research, 2019, 60, 1293-1310.	4.2	38
16	Analytic 3D Imaging of Mammalian Nucleus at Nanoscale Using Coherent X-Rays and Optical Fluorescence Microscopy. Biophysical Journal, 2014, 107, 1074-1081.	0.5	24
17	Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser. Scientific Reports, 2016, 6, 34008.	3.3	22
18	Dysregulation of hsa-miR-34a and hsa-miR-449a leads to overexpression of PACS-1 and loss of DNA damage response (DDR) in cervical cancer. Journal of Biological Chemistry, 2020, 295, 17169-17186.	3.4	19

#	Article	IF	CITATIONS
19	Fixed target single-shot imaging of nanostructures using thin solid membranes at SACLA. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 034008.	1.5	17
20	A structurally conserved human and <i>Tetrahymena</i> telomerase catalytic core. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31078-31087.	7.1	17
21	Correlative cellular ptychography with functionalized nanoparticles at the Fe L-edge. Scientific Reports, 2017, 7, 4757.	3.3	16
22	Homochiral and racemic MicroED structures of a peptide repeat from the ice-nucleation protein InaZ. IUCrJ, 2019, 6, 197-205.	2.2	16
23	Visualization of a Mammalian Mitochondrion by Coherent X-ray Diffractive Imaging. Scientific Reports, 2017, 7, 1850.	3.3	12
24	Frontier methods in coherent X-ray diffraction for high-resolution structure determination. Quarterly Reviews of Biophysics, 2016, 49, .	5.7	11
25	Single-shot 3D coherent diffractive imaging of core-shell nanoparticles with elemental specificity. Scientific Reports, 2018, 8, 8284.	3.3	10
26	Atomic structures determined from digitally defined nanocrystalline regions. IUCrJ, 2020, 7, 490-499.	2.2	8
27	Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens. Review of Scientific Instruments, 2013, 84, 113702.	1.3	6
28	Coherent diffraction imaging using focused hard X-rays. Journal of the Korean Physical Society, 2016, 68, 1083-1087.	0.7	0
29	GENFIRE: A Generalized Fourier Iterative Reconstruction Algorithm for High-Resolution 3D Electron and X-ray Imaging. Microscopy and Microanalysis, 2017, 23, 128-129.	0.4	0
30	GENFIRE: from Precisely Localizing Single Atoms in Materials to High Resolution 3D Imaging of Cellular Structures. Microscopy and Microanalysis, 2018, 24, 1446-1447.	0.4	0
31	Correlative 3D X-ray Fluorescence and Ptychographic Tomography of Frozen-Hydrated Green Algae. Microscopy and Microanalysis, 2019, 25, 114-115.	0.4	0
32	Structures from the Mesophase: MicroED Targets Crystals Extracted from LCP. Structure, 2020, 28, 1084-1086.	3.3	0
33	Determining Atomic Structures from Digitally Defined Regions of Nanocrystals. Microscopy and Microanalysis, 2020, 26, 748-749.	0.4	0