Joachim MorschhĤuser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9205605/publications.pdf Version: 2024-02-01

		44069	54911
131	8,059	48	84
papers	citations	h-index	g-index
132	132	132	5127
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene, 2004, 341, 119-127.	2.2	672
2	A Mutation in Tac1p, a Transcription Factor Regulating CDR1 and CDR2, Is Coupled With Loss of Heterozygosity at Chromosome 5 to Mediate Antifungal Resistance in Candida albicans. Genetics, 2006, 172, 2139-2156.	2.9	341
3	A Human-Curated Annotation of the Candida albicans Genome. PLoS Genetics, 2005, 1, e1.	3.5	293
4	The Transcription Factor Mrr1p Controls Expression of the MDR1 Efflux Pump and Mediates Multidrug Resistance in Candida albicans. PLoS Pathogens, 2007, 3, e164.	4.7	291
5	Mutations in the multiâ€drug resistance regulator <i>MRR1</i> , followed by loss of heterozygosity, are the main cause of <i>MDR1</i> overexpression in fluconazoleâ€resistant <i>Candida albicans</i> strains. Molecular Microbiology, 2008, 69, 827-840.	2.5	259
6	Regulation of multidrug resistance in pathogenic fungi. Fungal Genetics and Biology, 2010, 47, 94-106.	2.1	247
7	Gain-of-Function Mutations in <i>UPC2</i> Are a Frequent Cause of <i>ERG11</i> Upregulation in Azole-Resistant Clinical Isolates of Candida albicans. Eukaryotic Cell, 2012, 11, 1289-1299.	3.4	207
8	A Gain-of-Function Mutation in the Transcription Factor Upc2p Causes Upregulation of Ergosterol Biosynthesis Genes and Increased Fluconazole Resistance in a Clinical <i>Candida albicans</i> Isolate. Eukaryotic Cell, 2008, 7, 1180-1190.	3.4	203
9	The genetic basis of fluconazole resistance development in Candida albicans. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2002, 1587, 240-248.	3.8	197
10	Tetracycline-Inducible Gene Expression and Gene Deletion in Candida albicans. Eukaryotic Cell, 2005, 4, 1328-1342.	3.4	172
11	The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth inCandida albicans. Molecular Microbiology, 2005, 56, 649-669.	2.5	169
12	Targeted gene disruption in Candida albicans wild-type strains: the role of the MDR1 gene in fluconazole resistance of clinical Candida albicans isolates. Molecular Microbiology, 2000, 36, 856-865.	2.5	145
13	Sequential gene disruption in Candida albicans by FLP-mediated site-specific recombination. Molecular Microbiology, 1999, 32, 547-556.	2.5	142
14	Candida albicans-Induced Epithelial Damage Mediates Translocation through Intestinal Barriers. MBio, 2018, 9, .	4.1	131
15	Environmental Induction of White–Opaque Switching in Candida albicans. PLoS Pathogens, 2008, 4, e1000089.	4.7	126
16	Validation of a Self-Excising Marker in the Human Pathogen <i>Aspergillus fumigatus</i> by Employing the β-Rec/ <i>six</i> Site-Specific Recombination System. Applied and Environmental Microbiology, 2010, 76, 6313-6317.	3.1	122
17	Host-induced, stage-specific virulence gene activation in Candida albicans during infection. Molecular Microbiology, 1999, 32, 533-546.	2.5	121
18	Genome-Wide Expression and Location Analyses of the <i>Candida albicans</i> Tac1p Regulon. Eukaryotic Cell, 2007, 6, 2122-2138.	3.4	118

#	Article	IF	CITATIONS
19	An A643T Mutation in the Transcription Factor Upc2p Causes Constitutive <i>ERG11</i> Upregulation and Increased Fluconazole Resistance in <i>Candida albicans</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 353-359.	3.2	117
20	Calcineurin Is Essential for Virulence in Candida albicans. Infection and Immunity, 2003, 71, 5344-5354.	2.2	110
21	Regulation of Efflux Pump Expression and Drug Resistance by the Transcription Factors Mrr1, Upc2, and Cap1 in Candida albicans. Antimicrobial Agents and Chemotherapy, 2011, 55, 2212-2223.	3.2	108
22	The development of fluconazole resistance in Candida albicans – an example of microevolution of a fungal pathogen. Journal of Microbiology, 2016, 54, 192-201.	2.8	107
23	Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans. Microbiology (United Kingdom), 2008, 154, 3281-3295.	1.8	106
24	A family of oligopeptide transporters is required for growth of Candida albicans on proteins. Molecular Microbiology, 2006, 60, 795-812.	2.5	91
25	MDR1 -Mediated Drug Resistance in Candida dubliniensis. Antimicrobial Agents and Chemotherapy, 2001, 45, 3416-3421.	3.2	86
26	Adhesin regulatory genes within large, unstable DNA regions of pathogenic Escherichia coli: cross-talk between different adhesin gene clusters. Molecular Microbiology, 1994, 11, 555-566.	2.5	85
27	Proteomic analysis of the oxidative stress response inCandida albicans. Proteomics, 2007, 7, 686-697.	2.2	82
28	A role for antibodies in the generation of memory antifungal immunity. European Journal of Immunology, 2003, 33, 1193-1204.	2.9	80
29	Role of Calcineurin in Stress Resistance, Morphogenesis, and Virulence of a Candida albicans Wild-Type Strain. Infection and Immunity, 2006, 74, 4366-4369.	2.2	79
30	White-Opaque Switching of Candida albicans Allows Immune Evasion in an Environment-Dependent Fashion. Eukaryotic Cell, 2013, 12, 50-58.	3.4	79
31	The stepwise acquisition of fluconazole resistance mutations causes a gradual loss of fitness in <i><scp>C</scp>andida albicans</i> . Molecular Microbiology, 2012, 86, 539-556.	2.5	78
32	Overexpression of the MDR1 Gene Is Sufficient To Confer Increased Resistance to Toxic Compounds in Candida albicans. Antimicrobial Agents and Chemotherapy, 2006, 50, 1365-1371.	3.2	77
33	Regulation of white-opaque switching in Candida albicans. Medical Microbiology and Immunology, 2010, 199, 165-172.	4.8	77
34	Chlamydospore formation in Candida albicans and Candida dubliniensis? an enigmatic developmental programme. Mycoses, 2007, 50, 1-12.	4.0	75
35	Limited Role of Secreted Aspartyl Proteinases Sap1 to Sap6 in <i>Candida albicans</i> Virulence and Host Immune Response in Murine Hematogenously Disseminated Candidiasis. Infection and Immunity, 2010, 78, 4839-4849.	2.2	69
36	Gain-of-Function Mutations in the Transcription Factor <i>MRR1</i> Are Responsible for Overexpression of the <i>MDR1</i> Efflux Pump in Fluconazole-Resistant <i>Candida dubliniensis</i> Strains. Antimicrobial Agents and Chemotherapy, 2008, 52, 4274-4280.	3.2	66

#	Article	IF	CITATIONS
37	Analysis of a fungusâ€specific transcription factor family, the <i><scp>C</scp>andida albicans</i> zinc cluster proteins, by artificial activation. Molecular Microbiology, 2013, 89, 1003-1017.	2.5	66
38	Complete genetic organization and functional aspects of the Escherichia coli S fimbrial adhesin determinant: nucleotide sequence of the genes sfa B, C, D, E, F. Microbial Pathogenesis, 1990, 9, 331-343.	2.9	65
39	Profile of Candida albicans- Secreted Aspartic Proteinase Elicited during Vaginal Infection. Infection and Immunity, 2005, 73, 1828-1835.	2.2	62
40	A fourth gene from the Candida albicans CDR family of ABC transporters. Gene, 1998, 220, 91-98.	2.2	60
41	Evolution of microbial pathogens. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 695-704.	4.0	60
42	Proteomic Analysis of Azole Resistance in Candida albicans Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2004, 48, 2733-2735.	3.2	60
43	A proteomic view of Candida albicans yeast cell metabolism in exponential and stationary growth phases. International Journal of Medical Microbiology, 2008, 298, 291-318.	3.6	59
44	Transcriptional Regulators Cph1p and Efg1p Mediate Activation of the Candida albicans Virulence Gene SAP5 during Infection. Infection and Immunity, 2002, 70, 921-927.	2.2	56
45	Host versus in vitro signals and intrastrain allelic differences in the expression of a Candida albicans virulence gene. Molecular Microbiology, 2002, 44, 1351-1366.	2.5	56
46	Baculiferins A–O, O-sulfated pyrrole alkaloids with anti-HIV-1 activity, from the Chinese marine sponge Iotrochota baculifera. Bioorganic and Medicinal Chemistry, 2010, 18, 5466-5474.	3.0	55
47	Control of Ammonium Permease Expression and Filamentous Growth by the GATA Transcription Factors GLN3 and GAT1 in Candida albicans. Eukaryotic Cell, 2007, 6, 875-888.	3.4	54
48	The Transcription Factor Ndt80 Does Not Contribute to Mrr1-, Tac1-, and Upc2-Mediated Fluconazole Resistance in Candida albicans. PLoS ONE, 2011, 6, e25623.	2.5	50
49	Individual acid aspartic proteinases (Saps) 1-6 of Candida albicans are not essential for invasion and colonization of the gastrointestinal tract in mice. Microbial Pathogenesis, 2002, 32, 61-70.	2.9	49
50	Generation of conditional lethal Candida albicans mutants by inducible deletion of essential genes. Molecular Microbiology, 2002, 46, 269-280.	2.5	47
51	Differential Requirement of the Transcription Factor Mcm1 for Activation of the Candida albicans Multidrug Efflux Pump <i>MDR1</i> by Its Regulators Mrr1 and Cap1. Antimicrobial Agents and Chemotherapy, 2011, 55, 2061-2066.	3.2	47
52	Activation of the Cph1-Dependent MAP Kinase Signaling Pathway Induces White-Opaque Switching in Candida albicans. PLoS Pathogens, 2013, 9, e1003696.	4.7	47
53	A transcription factor regulatory cascade controls secreted aspartic protease expression in <i>Candida albicans</i> . Molecular Microbiology, 2008, 69, 586-602.	2.5	43
54	Transcriptional Activation and Increased mRNA Stability Contribute to Overexpression of <i>CDR1</i> in Azole-Resistant <i>Candida albicans</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 1481-1492.	3.2	43

Joachim Morschhã¤ser

#	Article	IF	CITATIONS
55	Phenotypic Profiling Reveals that Candida albicans Opaque Cells Represent a Metabolically Specialized Cell State Compared to Default White Cells. MBio, 2016, 7, .	4.1	43
56	The Candida dubliniensis CdCDR1 Gene Is Not Essential for Fluconazole Resistance. Antimicrobial Agents and Chemotherapy, 2002, 46, 2829-2841.	3.2	41
57	Factors Supporting Cysteine Tolerance and Sulfite Production in Candida albicans. Eukaryotic Cell, 2013, 12, 604-613.	3.4	40
58	Analysis of Phase-Specific Gene Expression at the Single-Cell Level in the White-Opaque Switching System of Candida albicans. Journal of Bacteriology, 2001, 183, 3761-3769.	2.2	39
59	A proteomic approach to understanding the development of multidrug-resistant Candida albicans strains. Molecular Genetics and Genomics, 2004, 271, 554-565.	2.1	39
60	Competitive Fitness of Fluconazole-Resistant Clinical Candida albicans Strains. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	39
61	Differential expression of the NRG1 repressor controls species-specific regulation of chlamydospore development in Candida albicans and Candida dubliniensis. Molecular Microbiology, 2004, 55, 637-652.	2.5	38
62	Oligopeptide transport and regulation of extracellular proteolysis are required for growth of Aspergillus fumigatus on complex substrates but not for virulence. Molecular Microbiology, 2011, 82, 917-935.	2.5	37
63	The Snf1â€activating kinase Sak1 is a key regulator of metabolic adaptation and <i>in vivo</i> fitness of <i>Candida albicans</i> . Molecular Microbiology, 2017, 104, 989-1007.	2.5	37
64	An acquired mechanism of antifungal drug resistance simultaneously enables Candida albicans to escape from intrinsic host defenses. PLoS Pathogens, 2017, 13, e1006655.	4.7	37
65	Multiple cis -Acting Sequences Mediate Upregulation of the MDR1 Efflux Pump in a Fluconazole-Resistant Clinical Candida albicans Isolate. Antimicrobial Agents and Chemotherapy, 2006, 50, 2300-2308.	3.2	35
66	Voriconazole and multidrug resistance in Candida albicans. Mycoses, 2007, 50, 109-115.	4.0	35
67	Tetracycline-Inducible Expression of Individual Secreted Aspartic Proteases in <i>Candida albicans</i> Allows Isoenzyme-Specific Inhibitor Screening. Antimicrobial Agents and Chemotherapy, 2008, 52, 146-156.	3.2	35
68	Functional Dissection of a Candida albicans Zinc Cluster Transcription Factor, the Multidrug Resistance Regulator Mrr1. Eukaryotic Cell, 2011, 10, 1110-1121.	3.4	34
69	Characterization of Biofilm Formation and the Role of <i>BCR1</i> in Clinical Isolates of Candida parapsilosis. Eukaryotic Cell, 2014, 13, 438-451.	3.4	34
70	A Zinc Cluster Transcription Factor Contributes to the Intrinsic Fluconazole Resistance of Candida auris. MSphere, 2020, 5, .	2.9	34
71	Dur3 is the major urea transporter in Candida albicans and is co-regulated with the urea amidolyase Dur1,2. Microbiology (United Kingdom), 2011, 157, 270-279.	1.8	33
72	Systematic Genetic Screen for Transcriptional Regulators of the <i>Candida albicans</i> White-Opaque Switch. Genetics, 2016, 203, 1679-1692.	2.9	33

#	Article	IF	CITATIONS
73	Transcriptional Analysis of the sfa Determinant Revealing Multiple mRNA Processing Events in the Biogenesis of S Fimbriae in Pathogenic Escherichia coli. Journal of Bacteriology, 2003, 185, 620-629.	2.2	32
74	Gene Deletion in Candida albicans Wild-Type Strains Using the SAT1-Flipping Strategy. Methods in Molecular Biology, 2012, 845, 3-17.	0.9	32
75	Transcriptional analysis and regulation of the sfa determinant coding for S fimbriae of pathogenic Escherichia coli strains. Molecular Genetics and Genomics, 1993, 238-238, 97-105.	2.4	30
76	Roles of Different Peptide Transporters in Nutrient Acquisition in Candida albicans. Eukaryotic Cell, 2013, 12, 520-528.	3.4	30
77	Evolution of Fluconazole-Resistant Candida albicans Strains by Drug-Induced Mating Competence and Parasexual Recombination. MBio, 2019, 10, .	4.1	30
78	<i>In Vitro</i> Activities of the Novel Investigational Tetrazoles VT-1161 and VT-1598 Compared to the Triazole Antifungals against Azole-Resistant Strains and Clinical Isolates of <i>Candida albicans</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	29
79	SAGA/ADA Complex Subunit Ada2 Is Required for Cap1- but Not Mrr1-Mediated Upregulation of the Candida albicans Multidrug Efflux Pump <i>MDR1</i> . Antimicrobial Agents and Chemotherapy, 2014, 58, 5102-5110.	3.2	28
80	Functional analysis of CaRAP1 , encoding the Repressor/activator protein 1 of Candida albicans. Gene, 2003, 307, 151-158.	2.2	27
81	Nitrogen regulation of morphogenesis and protease secretion in Candida albicans. International Journal of Medical Microbiology, 2011, 301, 390-394.	3.6	25
82	Loss of Heterozygosity at an Unlinked Genomic Locus Is Responsible for the Phenotype of a Candida albicans <i>sap4</i> Δ <i>sap5</i> Δ <i>sap6</i> Δ Mutant. Eukaryotic Cell, 2011, 10, 54-62.	3.4	25
83	A molecular genetic system for the pathogenic yeast Candida dubliniensis. Gene, 2000, 242, 393-398.	2.2	24
84	Expression of the CDR1 efflux pump in clinical Candida albicans isolates is controlled by a negative regulatory element. Biochemical and Biophysical Research Communications, 2005, 332, 206-214.	2.1	24
85	Ahr1 and Tup1 Contribute to the Transcriptional Control of Virulence-Associated Genes in Candida albicans. MBio, 2020, 11, .	4.1	24
86	Global Transcriptome Sequencing Identifies Chlamydospore Specific Markers in Candida albicans and Candida dubliniensis. PLoS ONE, 2013, 8, e61940.	2.5	23
87	Gene regulation and host adaptation mechanisms in Candida albicans. International Journal of Medical Microbiology, 2001, 291, 183-188.	3.6	22
88	Degradation of human subendothelial extracellular matrix by proteinase-secreting Candida albicans. FEMS Microbiology Letters, 2006, 153, 349-355.	1.8	21
89	Induction of Candida albicans Drug Resistance Genes by Hybrid Zinc Cluster Transcription Factors. Antimicrobial Agents and Chemotherapy, 2015, 59, 558-569.	3.2	21
90	A Global Analysis of Kinase Function in Candida albicans Hyphal Morphogenesis Reveals a Role for the Endocytosis Regulator Akl1. Frontiers in Cellular and Infection Microbiology, 2018, 8, 17.	3.9	21

Joachim MorschhÄüser

#	Article	IF	CITATIONS
91	Rewiring of the Ppr1 Zinc Cluster Transcription Factor from Purine Catabolism to Pyrimidine Biogenesis in the Saccharomycetaceae. Current Biology, 2016, 26, 1677-1687.	3.9	20
92	<i>Cis</i> onfigured Aziridines Are New Pseudoâ€Irreversible Dualâ€Mode Inhibitors of <i>Candida albicans</i> Secreted Aspartic Proteaseâ€2. ChemMedChem, 2008, 3, 302-315.	3.2	19
93	Cerulenin Analogues as Inhibitors of Efflux Pumps in Drugâ€resistant <i>Candida albicans</i> . Archiv Der Pharmazie, 2009, 342, 150-164.	4.1	19
94	Role of the Npr1 Kinase in Ammonium Transport and Signaling by the Ammonium Permease Mep2 in Candida albicans. Eukaryotic Cell, 2011, 10, 332-342.	3.4	19
95	Glutathione Utilization by Candida albicans Requires a Functional Glutathione Degradation (DUG) Pathway and OPT7, an Unusual Member of the Oligopeptide Transporter Family. Journal of Biological Chemistry, 2011, 286, 41183-41194.	3.4	17
96	Put3 Positively Regulates Proline Utilization in Candida albicans. MSphere, 2017, 2, .	2.9	17
97	Regulation and Binding Properties of S Fimbriae Cloned from E. coli Strains Causing Urinary Tract Infection and Meningitis. Zentralblatt Fur Bakteriologie: International Journal of Medical Microbiology, 1993, 278, 165-176.	0.5	15
98	Contribution of Clinically Derived Mutations in the Gene Encoding the Zinc Cluster Transcription Factor Mrr2 to Fluconazole Antifungal Resistance and <i>CDR1</i> Expression in <i>Candida albicans</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	15
99	The protein kinase Ire1 has a Hac1-independent essential role in iron uptake and virulence of Candida albicans. PLoS Pathogens, 2022, 18, e1010283.	4.7	15
100	Functional characterization of CaCBF1, the Candida albicans homolog of centromere binding factor 1. Gene, 2003, 323, 43-55.	2.2	14
101	New <i>cis</i> onfigured Aziridineâ€2 arboxylates as Aspartic Acid Protease Inhibitors. ChemMedChem, 2011, 6, 141-152.	3.2	14
102	Inducible and Constitutive Activation of Two Polymorphic Promoter Alleles of the Candida albicans Multidrug Efflux Pump <i>MDR1</i> . Antimicrobial Agents and Chemotherapy, 2012, 56, 4490-4494.	3.2	14
103	Tec1p-Independent Activation of a Hypha-Associated Candida albicans Virulence Gene during Infection. Infection and Immunity, 2004, 72, 2386-2389.	2.2	13
104	Targeted Gene Deletion in <1>Candida albicans 1 Wild-Type Strains by <1>MPA ^{R<!--1-->} Flipping. , 2005, 118, 035-044.		13
105	Mutational Analysis of the <i>Candida albicans</i> Ammonium Permease Mep2p Reveals Residues Required for Ammonium Transport and Signaling. Eukaryotic Cell, 2009, 8, 147-160.	3.4	13
106	Disruption of Homocitrate Synthase Genes in Candida albicans Affects Growth But Not Virulence. Mycopathologia, 2010, 170, 397-402.	3.1	13
107	Reduced PICD in Monocytes Mounts Altered Neonate Immune Response to Candida albicans. PLoS ONE, 2016, 11, e0166648.	2.5	12
108	Liquid growth conditions for abundant chlamydospore formation in Candida dubliniensis. Mycoses, 2005, 48, 50-54.	4.0	11

#	Article	IF	CITATIONS
109	Candida albicans MTLα tup1î" mutants can reversibly switch to mating-competent, filamentous growth forms. Molecular Microbiology, 2005, 58, 1288-1302.	2.5	11
110	Proteomic analysis of Mrr1p―and Tac1pâ€∎ssociated differential protein expression in azoleâ€resistant clinical isolates of <i>Candida albicans</i> . Proteomics - Clinical Applications, 2009, 3, 968-978.	1.6	11
111	Seminal plasma protects human spermatozoa and pathogenic yeasts from capture by dendritic cells. Human Reproduction, 2011, 26, 987-999.	0.9	11
112	A Hyperactive Form of the Zinc Cluster Transcription Factor Stb5 Causes <i>YOR1</i> Overexpression and Beauvericin Resistance in Candida albicans. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	10
113	The zinc cluster transcription factor Czf1 regulates cell wall architecture and integrity in <i>Candida albicans</i> . Molecular Microbiology, 2021, 116, 483-497.	2.5	10
114	The white-phase-specific gene WH11 is not required for white-opaque switching in Candida albicans. Molecular Genetics and Genomics, 2004, 272, 88-97.	2.1	9
115	Control of morphogenesis, protease secretion and gene expression in Candida albicans by the preferred nitrogen source ammonium. Microbiology (United Kingdom), 2014, 160, 1599-1608.	1.8	9
116	Candida parapsilosis Mdr1B and Cdr1B Are Drivers of Mrr1-Mediated Clinical Fluconazole Resistance. Antimicrobial Agents and Chemotherapy, 2022, 66, .	3.2	9
117	Expression of Virulence Genes in Candida Albicans. , 2000, 485, 167-176.		8
118	Upc2pâ€associated differential protein expression in <i>Candida albicans</i> . Proteomics, 2009, 9, 4726-4730.	2.2	8
119	Generation of Viable Candida albicans Mutants Lacking the "Essential―Protein Kinase Snf1 by Inducible Gene Deletion. MSphere, 2020, 5, .	2.9	8
120	Transport Deficiency Is the Molecular Basis of Candida albicans Resistance to Antifungal Oligopeptides. Frontiers in Microbiology, 2017, 8, 2154.	3.5	7
121	Impact of manganese on biofilm formation and cell morphology of <i>Candida parapsilosis</i> clinical isolates with different biofilm forming abilities. FEMS Yeast Research, 2019, 19, .	2.3	6
122	An Intragenic Recombination Event Generates a Snf4-Independent Form of the Essential Protein Kinase Snf1 in Candida albicans. MSphere, 2019, 4, .	2.9	5
123	The zinc cluster transcription factor Rha1 is a positive filamentation regulator in <i>Candida albicans</i> . Genetics, 2022, 220, .	2.9	5
124	Tetracycline-Inducible Gene Expression in Candida albicans. Methods in Molecular Biology, 2012, 845, 201-210.	0.9	4
125	A Suppressor Mutation in the β-Subunit Kis1 Restores Functionality of the SNF1 Complex in <i>Candida albicans snf4</i> Δ Mutants. MSphere, 2021, 6, e0092921.	2.9	4
126	Candida albicans SR-Like Protein Kinases Regulate Different Cellular Processes: Sky1 Is Involved in Control of Ion Homeostasis, While Sky2 Is Important for Dipeptide Utilization. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	3.9	3

#	Article	IF	CITATIONS
127	<i>CARE-2</i> Fingerprinting of <i>Candida albicans</i> Isolates. , 2005, 118, 027-034.		2
128	Transcriptional Analysis of the Sfa and Pap Determinants of Uropathogenic Escherichia Coli Strains. , 2000, 485, 119-122.		1
129	Pathobiology of human–pathogenic fungi. International Journal of Medical Microbiology, 2011, 301, 367.	3.6	1
130	MDR1 and Its Regulation. , 2017, , 407-415.		1
131	The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Molecular Microbiology, 2006, 60, 1603-1604.	2.5	0