
Pengju Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9205314/publications.pdf Version: 2024-02-01

DENCILI YANC

#	Article	IF	CITATIONS
1	Oxygen vacancies in Co3O4 promote CO2 photoreduction. Applied Catalysis B: Environmental, 2022, 300, 120729.	20.2	105
2	Nitrogen vacancies in polymeric carbon nitrides promote CO2 photoreduction. Journal of Catalysis, 2022, 409, 12-23.	6.2	23
3	Lightâ€Induced Synthesis of Oxygenâ€Vacancyâ€Functionalized Ni(OH) ₂ Nanosheets for Highly Selective CO ₂ Reduction. ChemSusChem, 2022, 15, .	6.8	13
4	Hydrogen-Bonded Aggregates Featuring <i>n</i> → π* Electronic Transition for Efficient Visible-Light-Responsive Photocatalysis. ACS Catalysis, 2022, 12, 6276-6284.	11.2	11
5	Cobalt Nitride Anchored on Nitrogen-Rich Carbons for Efficient Carbon Dioxide Reduction with Visible Light. Applied Catalysis B: Environmental, 2021, 280, 119454.	20.2	53
6	Regulating morphological and electronic structures of polymeric carbon nitrides by successive copolymerization and stream reforming for photocatalytic CO ₂ reduction. Catalysis Science and Technology, 2021, 11, 2570-2576.	4.1	16
7	A semi-crystalline carbonaceous structure as a wide-spectrum-responsive photocatalyst for efficient redox catalysis. Chemical Communications, 2021, 57, 5086-5089.	4.1	4
8	Distorted carbon nitride nanosheets with activated nÂ→ÂÏ€* transition and preferred textural properties for photocatalytic CO2 reduction. Journal of Catalysis, 2021, 402, 166-176.	6.2	101
9	Selectively constructing nitrogen vacancy in carbon nitrides for efficient syngas production with visible light. Applied Catalysis B: Environmental, 2021, 297, 120496.	20.2	31
10	Photochemical Construction of Nitrogen-Containing Nanocarbons for Carbon Dioxide Photoreduction. ACS Catalysis, 2020, 10, 12706-12715.	11.2	36
11	Twoâ€photon Absorption in a Defectâ€engineered Carbon Nitride Polymer Drives Redâ€light Photocatalysis. ChemCatChem, 2020, 12, 4185-4197.	3.7	10
12	Hydrogen reduction treatment of boron carbon nitrides for photocatalytic selective oxidation of alcohols. Applied Catalysis B: Environmental, 2020, 276, 118916.	20.2	49
13	Rational electronic control of carbon dioxide reduction over cobalt oxide. Journal of Catalysis, 2020, 387, 119-128.	6.2	20
14	Modulating charge separation and transfer kinetics in carbon nanodots for photoredox catalysis. Journal of Energy Chemistry, 2020, 50, 365-377.	12.9	15
15	Photocarving nitrogen vacancies in a polymeric carbon nitride for metal-free oxygen synthesis. Applied Catalysis B: Environmental, 2019, 256, 117794.	20.2	80
16	Polymeric Donor–Acceptor Heterostructures for Enhanced Photocatalytic H ₂ Evolution without Using Pt Cocatalysts. Chemistry - A European Journal, 2019, 25, 6102-6107.	3.3	33
17	Carbon Vacancies in a Melon Polymeric Matrix Promote Photocatalytic Carbon Dioxide Conversion. Angewandte Chemie - International Edition, 2019, 58, 1134-1137.	13.8	208
18	Carbon Vacancies in a Melon Polymeric Matrix Promote Photocatalytic Carbon Dioxide Conversion. Angewandte Chemie, 2019, 131, 1146-1149.	2.0	42

Pengju Yang

#	Article	lF	CITATIONS
19	Boron Carbon Nitride Semiconductors Decorated with CdS Nanoparticles for Photocatalytic Reduction of CO ₂ . ACS Catalysis, 2018, 8, 4928-4936.	11.2	413
20	Photochemical Construction of Carbonitride Structures for Red‣ight Redox Catalysis. Angewandte Chemie - International Edition, 2018, 57, 8674-8677.	13.8	93
21	Photochemical Construction of Carbonitride Structures for Red‣ight Redox Catalysis. Angewandte Chemie, 2018, 130, 8810-8813.	2.0	28
22	Layered Heterostructures of Ultrathin Polymeric Carbon Nitride and ZnIn ₂ S ₄ Nanosheets for Photocatalytic CO ₂ Reduction. Chemistry - A European Journal, 2018, 24, 18529-18534.	3.3	116
23	Structureâ€Mediated Charge Separation in Boron Carbon Nitride for Enhanced Photocatalytic Oxidation of Alcohol. ChemSusChem, 2018, 11, 3949-3955.	6.8	46
24	A Facile Steam Reforming Strategy to Delaminate Layered Carbon Nitride Semiconductors for Photoredox Catalysis. Angewandte Chemie - International Edition, 2017, 56, 3992-3996.	13.8	374
25	A Facile Steam Reforming Strategy to Delaminate Layered Carbon Nitride Semiconductors for Photoredox Catalysis. Angewandte Chemie, 2017, 129, 4050-4054.	2.0	87
26	Triâ€ <i>s</i> â€ŧriazineâ€Based Crystalline Carbon Nitride Nanosheets for an Improved Hydrogen Evolution. Advanced Materials, 2017, 29, 1700008.	21.0	541
27	Carbonâ€Doped BN Nanosheets for the Oxidative Dehydrogenation of Ethylbenzene. Angewandte Chemie - International Edition, 2017, 56, 8231-8235.	13.8	185
28	Carbonâ€Doped BN Nanosheets for the Oxidative Dehydrogenation of Ethylbenzene. Angewandte Chemie, 2017, 129, 8343-8347.	2.0	51
29	A site-holding effect of TiO ₂ surface hydroxyl in the photocatalytic direct synthesis of 1,1-diethoxyethane from ethanol. Chemical Communications, 2017, 53, 1518-1521.	4.1	38
30	Modulating Crystallinity of Graphitic Carbon Nitride for Photocatalytic Oxidation of Alcohols. ChemSusChem, 2017, 10, 4451-4456.	6.8	96
31	Carbon Nitride Aerogels for the Photoredox Conversion of Water. Angewandte Chemie, 2017, 129, 11045-11050.	2.0	69
32	Carbon Nitride Aerogels for the Photoredox Conversion of Water. Angewandte Chemie - International Edition, 2017, 56, 10905-10910.	13.8	287
33	Green oxidation of bio-lactic acid with H2O2 into tartronic acid under UV irradiation. RSC Advances, 2016, 6, 41007-41010.	3.6	4
34	Direct C–C coupling of bio-ethanol into 2,3-butanediol by photochemical and photocatalytic oxidation with hydrogen peroxide. Green Chemistry, 2016, 18, 6029-6034.	9.0	15
35	Chlorine-Induced In Situ Regulation to Synthesize Graphene Frameworks with Large Specific Area for Excellent Supercapacitor Performance. ACS Applied Materials & Interfaces, 2016, 8, 6481-6487.	8.0	29
36	Multifunctional Nitrogenâ€Doped Carbon Nanodots for Photoluminescence, Sensor, and Visibleâ€Lightâ€Induced H ₂ Production. ChemPhysChem, 2015, 16, 3058-3063.	2.1	28

Pengju Yang

#	Article	IF	CITATIONS
37	Selective Photocatalytic CC Coupling of Bioethanol into 2,3â€Butanediol over Ptâ€Decorated Hydroxylâ€Groupâ€Tunable TiO ₂ Photocatalysts. ChemCatChem, 2015, 7, 2384-2390.	3.7	18
38	Understanding the Formation Mechanism of Graphene Frameworks Synthesized by Solvothermal and Rapid Pyrolytic Processes Based on an Alcohol‑Sodium Hydroxide System. ACS Applied Materials & Interfaces, 2015, 7, 11230-11238.	8.0	32
39	Photocatalytic carbon–carbon bond formation with concurrent hydrogen evolution on the Pt/TiO2 nanotube. Applied Surface Science, 2015, 325, 86-90.	6.1	44
40	Pure carbon nanodots for excellent photocatalytic hydrogen generation. RSC Advances, 2015, 5, 21332-21335.	3.6	56
41	Construction of Z-scheme carbon nanodots/WO ₃ with highly enhanced photocatalytic hydrogen production. Journal of Materials Chemistry A, 2015, 3, 8256-8259.	10.3	85
42	Intramolecular Hydrogen Bonds Quench Photoluminescence and Enhance Photocatalytic Activity of Carbon Nanodots. Chemistry - A European Journal, 2015, 21, 8561-8568.	3.3	75
43	Ammonia-induced robust photocatalytic hydrogen evolution of graphitic carbon nitride. Nanoscale, 2015, 7, 18887-18890.	5.6	105
44	Light-induced synthesis of photoluminescent carbon nanoparticles for Fe ³⁺ sensing and photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 136-138.	10.3	41
45	Cooperative Dehydrogenation Coupling of Isopropanol and Hydrogenation Coupling of Acetone Over a Sodium Tantalate Photocatalyst. ChemCatChem, 2014, 6, 1673-1678.	3.7	14