Matthew Collins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9204971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A modern baseline for the paired isotopic analysis of skin and bone in terrestrial mammals. Royal Society Open Science, 2022, 9, 211587.	2.4	2
2	Data From "A Biocodicological Analysis of the Medieval Library and Archive From Orval Abbey, Belgium― Journal of Open Archaeology Data, 2022, 10, .	0.8	2
3	Isotope analysis of human dental calculus δ ¹³ CO ₃ ^{2â^`} : Investigating a potential new proxy for sugar consumption. Rapid Communications in Mass Spectrometry, 2022, 36, e9286.	1.5	1
4	The Vienna Genesis: An Example of Late Antique Purple Parchment. Restaurator, 2022, .	0.2	0
5	Ancient proteins resolve controversy over the identity of <i>Genyornis</i> eggshell. Proceedings of the United States of America, 2022, 119, .	7.1	14
6	Conformational analysis and water dynamics: a molecular dynamics study on the survival of a β-lactoglobulin peptide in the archaeological record. Chemical Physics, 2022, 561, 111602.	1.9	2
7	Paleoproteomics. Chemical Reviews, 2022, 122, 13401-13446.	47.7	42
8	On the standardization of ZooMS nomenclature. Journal of Proteomics, 2021, 235, 104041.	2.4	37
9	Assessment of different screening methods for selecting palaeontological bone samples for peptide sequencing. Journal of Proteomics, 2021, 230, 103986.	2.4	3
10	Bone degradation at five Arctic archaeological sites: Quantifying the importance of burial environment and bone characteristics. Journal of Archaeological Science, 2021, 125, 105296.	2.4	10
11	Measuring the impact of parchment production on skin collagen stable isotope (δ ¹³ C and) Tj ETQq1	1,0.7843 2.4	14 rgBT /O
12	Girding the loins? Direct evidence of the use of a medieval English parchment birthing girdle from biomolecular analysis. Royal Society Open Science, 2021, 8, 202055.	2.4	11
13	Palaeoproteomics confirm earliest domesticated sheep in southern Africa ca. 2000 BP. Scientific Reports, 2021, 11, 6631.	3.3	28
14	Scratching the surface: the use of sheepskin parchment to deter textual erasure in early modern legal deeds. Heritage Science, 2021, 9, 29.	2.3	8
15	Assessing the degradation of ancient milk proteinsÂthrough site-specific deamidation patterns. Scientific Reports, 2021, 11, 7795.	3.3	22
16	A biocodicological analysis of the medieval library and archive from Orval Abbey, Belgium. Royal Society Open Science, 2021, 8, 210210.	2.4	8
17	Palaeoproteomic analyses of dog palaeofaeces reveal a preserved dietary and host digestive proteome. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210020.	2.6	7
18	The degradation of intracrystalline mollusc shell proteins: A proteomics study of Spondylus gaederopus, Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140718	2.3	2

#	Article	IF	CITATIONS
19	Multi-protease analysis of Pleistocene bone proteomes. Journal of Proteomics, 2020, 228, 103889.	2.4	18
20	The parchment of the Vienna Genesis: characteristics and manufacture. , 2020, , 35-70.		6
21	DNA preserved in jetsam whale ambergris. Biology Letters, 2020, 16, 20190819.	2.3	7
22	A conscious rethink: Why is brain tissue commonly preserved in the archaeological record? Commentary on: Petrone P, Pucci P, Niola M, et al. Heat-induced brain vitrification from the Vesuvius eruption in C.E. 79. N Engl J Med 2020;382:383-4. DOI: 10.1056/NEJMc1909867. Science and Technology of Archaeological Research, 2020, 6, 87-95.	2.4	2
23	An integrated analysis of Maglemose bone points reframes the Early Mesolithic of Southern Scandinavia. Scientific Reports, 2020, 10, 17244.	3.3	16
24	Comparing biological and pathological factors affecting osteocalcin concentrations in archaeological skeletal remains. Journal of Archaeological Science: Reports, 2020, 34, 102573.	0.5	0
25	The biomolecular characterization of a finger ring contextually dated to the emergence of the Early Neolithic from Syltholm, Denmark. Royal Society Open Science, 2020, 7, 191172.	2.4	6
26	How to get your goat: automated identification of species from MALDI-ToF spectra. Bioinformatics, 2020, 36, 3719-3725.	4.1	11
27	Rapid loss of endogenous DNA in pig bone buried in five different environments. Archaeometry, 2020, 62, 827-846.	1.3	2
28	What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon. Journal of Archaeological Science, 2020, 116, 105116.	2.4	19
29	Screening archaeological bone for palaeogenetic and palaeoproteomic studies. PLoS ONE, 2020, 15, e0235146.	2.5	34
30	DeamiDATE 1.0: Site-specific deamidation as a tool to assess authenticity of members of ancient proteomes. Journal of Archaeological Science, 2020, 115, 105080.	2.4	36
31	Histological study of sheep skin transformation during the recreation of historical parchment manufacture. Heritage Science, 2020, 8, .	2.3	7
32	Bone biodeterioration—The effect of marine and terrestrial depositional environments on early diagenesis and bone bacterial community. PLoS ONE, 2020, 15, e0240512.	2.5	22
33	So you want to do biocodicology? A field guide to the biological analysis of parchment. Heritage Science, 2019, 7, .	2.3	33
34	Identifying Archaeological Bone via Non-Destructive ZooMS and the Materiality of Symbolic Expression: Examples from Iroquoian Bone Points. Scientific Reports, 2019, 9, 11027.	3.3	56
35	New insights into Neolithic milk consumption through proteomic analysis of dental calculus. Archaeological and Anthropological Sciences, 2019, 11, 6183-6196.	1.8	45
36	Bone diagenesis in a Mycenaean secondary burial (Kastrouli, Greece). Archaeological and Anthropological Sciences, 2019, 11, 5213-5230.	1.8	31

#	Article	IF	CITATIONS
37	Palaeoproteomics resolves sloth relationships. Nature Ecology and Evolution, 2019, 3, 1121-1130.	7.8	91
38	Ancient amino acids from fossil feathers in amber. Scientific Reports, 2019, 9, 6420.	3.3	25
39	lonisation bias undermines the use of matrixâ€assisted laser desorption/ionisation for estimating peptide deamidation: Synthetic peptide studies demonstrate electrospray ionisation gives more reliable response ratios. Rapid Communications in Mass Spectrometry, 2019, 33, 1049-1057.	1.5	9
40	Enamel proteome shows that Gigantopithecus was an early diverging pongine. Nature, 2019, 576, 262-265.	27.8	82
41	A 5700 year-old human genome and oral microbiome from chewed birch pitch. Nature Communications, 2019, 10, 5520.	12.8	61
42	Medieval women's early involvement in manuscript production suggested by lapis lazuli identification in dental calculus. Science Advances, 2019, 5, eaau7126.	10.3	52
43	Petrous bone diagenesis: a multi-analytical approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 518, 143-154.	2.3	48
44	Ancient cattle genomics, origins, and rapid turnover in the Fertile Crescent. Science, 2019, 365, 173-176.	12.6	138
45	Collagen proteins exchange oxygen with demineralisation and gelatinisation reagents and also with atmospheric moisture. Rapid Communications in Mass Spectrometry, 2018, 32, 523-534.	1.5	9
46	A guide to ancient protein studies. Nature Ecology and Evolution, 2018, 2, 791-799.	7.8	163
47	Comment on "Ecological niche of Neanderthals from Spy Cave revealed by nitrogen isotopes of individual amino acids in collagen―[J. Hum. Evol. 93 (2016) 82–90]. Journal of Human Evolution, 2018, 117, 53-55.	2.6	17
48	Diagenesis of archaeological bone and tooth. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 491, 21-37.	2.3	207
49	Ancient proteins from ceramic vessels at Çatalhöyük West reveal the hidden cuisine of early farmers. Nature Communications, 2018, 9, 4064.	12.8	105
50	Preparation of bone powder for FTIR-ATR analysis: The particle size effect. Vibrational Spectroscopy, 2018, 99, 167-177.	2.2	46
51	Species identification using ZooMS, with reference to the exploitation of animal resources in the medieval town of Odense. Danish Journal of Archaeology, 2018, 7, 139-153.	0.7	25
52	Ancient goat genomes reveal mosaic domestication in the Fertile Crescent. Science, 2018, 361, 85-88.	12.6	149
53	Proteomic evidence of dietary sources in ancient dental calculus. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180977.	2.6	97
54	Exaggerated expectations in ancient starch research and the need for new taphonomic and authenticity criteria. Facets, 2018, 3, 777-798.	2.4	54

#	Article	IF	CITATIONS
55	Multiple Microanalyses of a Sample from the Vinland Map. Archaeometry, 2017, 59, 287-301.	1.3	3
56	A new model for ancient DNA decay based on paleogenomic meta-analysis. Nucleic Acids Research, 2017, 45, 6310-6320.	14.5	168
57	The dental calculus metabolome in modern and historic samples. Metabolomics, 2017, 13, 134.	3.0	44
58	New criteria for the molecular identification of cereal grains associated with archaeological artefacts. Scientific Reports, 2017, 7, 6633.	3.3	63
59	Preservation of the metaproteome: variability of protein preservation in ancient dental calculus. Science and Technology of Archaeological Research, 2017, 3, 58-70.	2.4	39
60	Variations in glutamine deamidation for a Châtelperronian bone assemblage as measured by peptide mass fingerprinting of collagen. Science and Technology of Archaeological Research, 2017, 3, 15-27.	2.4	34
61	The York Gospels: a 1000-year biological palimpsest. Royal Society Open Science, 2017, 4, 170988.	2.4	66
62	The identification of archaeological eggshell using peptide markers. Science and Technology of Archaeological Research, 2017, 3, 89-99.	2.4	23
63	Provenancing Archaeological Wool Textiles from Medieval Northern Europe by Light Stable Isotope Analysis (Î 13C, Î 15N, Î 2H). PLoS ONE, 2016, 11, e0162330.	2.5	24
64	Barcoding the largest animals on Earth: ongoing challenges and molecular solutions in the taxonomic identification of ancient cetaceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150332.	4.0	30
65	Finding Britain's last hunter-gatherers: A new biomolecular approach to â€`unidentifiable' bone fragments utilising bone collagen. Journal of Archaeological Science, 2016, 73, 55-61.	2.4	33
66	Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11162-11167.	7.1	251
67	Using combined biomolecular methods to explore whale exploitation and social aggregation in hunter–gatherer–fisher society in Tierra del Fuego. Journal of Archaeological Science: Reports, 2016, 6, 757-767.	0.5	26
68	Genomic signals of migration and continuity in Britain before the Anglo-Saxons. Nature Communications, 2016, 7, 10326.	12.8	100
69	Poor preservation of antibodies in archaeological human bone and dentine. Science and Technology of Archaeological Research, 2016, 2, 15-24.	2.4	10
70	The challenge of identifying tuberculosis proteins in archaeological tissues. Journal of Archaeological Science, 2016, 66, 146-153.	2.4	37
71	A mass spectrometry method for the determination of the species of origin of gelatine in foods and pharmaceutical products. Food Chemistry, 2016, 190, 276-284.	8.2	51
72	Technological Analysis of the World's Earliest Shamanic Costume: A Multi-Scalar, Experimental Study of a Red Deer Headdress from the Early Holocene Site of Star Carr, North Yorkshire, UK. PLoS ONE, 2016, 11, e0152136.	2.5	18

#	Article	IF	CITATIONS
73	Mapping the Elephants of the 19th Century East African Ivory Trade with a Multi-Isotope Approach. PLoS ONE, 2016, 11, e0163606.	2.5	37
74	Protein sequences bound to mineral surfaces persist into deep time. ELife, 2016, 5, .	6.0	176
75	Aspartic Acid Racemization. , 2016, , 47-55.		0
76	Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification. Scientific Reports, 2015, 5, 16498.	3.3	153
77	Animal origin of 13th-century uterine vellum revealed using noninvasive peptide fingerprinting. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15066-15071.	7.1	140
78	A review of the dodo and its ecosystem: insights from a vertebrate concentration Lagerstäte in Mauritius. Journal of Vertebrate Paleontology, 2015, 35, 3-20.	1.0	15
79	Using ZooMS to identify fragmentary bone from the Late Middle/Early Upper Palaeolithic sequence of Les Cottés, France. Journal of Archaeological Science, 2015, 54, 279-286.	2.4	93
80	Ancient human microbiomes. Journal of Human Evolution, 2015, 79, 125-136.	2.6	123
81	Advances in identifying archaeological traces of horn and other keratinous hard tissues. Studies in Conservation, 2015, 60, 393-417.	1.1	25
82	A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130376.	4.0	203
83	Questioning new answers regarding Holocene chicken domestication in China. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2415.	7.1	46
84	Ancient proteins resolve the evolutionary history of Darwin's South American ungulates. Nature, 2015, 522, 81-84.	27.8	273
85	Paging through history: parchment as a reservoir of ancient DNA for next generation sequencing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130379.	4.0	52
86	The future of ancient DNA: Technical advances and conceptual shifts. BioEssays, 2015, 37, 284-293.	2.5	209
87	An assessment of procedures to remove exogenous Sr before 87Sr/86Sr analysis of wet archaeological wool textiles. Journal of Archaeological Science, 2015, 53, 84-93.	2.4	14
88	Amino Acid Racemization Dating. Encyclopedia of Earth Sciences Series, 2015, , 13-26.	0.1	2
89	Amino Acid Racemization, Paleoclimate. Encyclopedia of Earth Sciences Series, 2015, , 47-48.	0.1	1

90 Amino Acid Racemization Dating. , 2014, , 1-22.

#	Article	IF	CITATIONS
91	Radiocarbon and Protein Analyses Indicate an Early Holocene Age for the Osseous Rod from Grenfell, Saskatchewan, Canada. American Antiquity, 2014, 79, 782-793.	1.1	12
92	Wet degradation of keratin proteins: linking amino acid, elemental and isotopic composition. Rapid Communications in Mass Spectrometry, 2014, 28, 2121-2133.	1.5	22
93	An integrated stable isotope study of plants and animals from Kouphovouno, southern Greece: a new look at Neolithic farming. Journal of Archaeological Science, 2014, 42, 201-215.	2.4	103
94	Analysis of collagen preservation in bones recovered in archaeological contexts using NIR Hyperspectral Imaging. Talanta, 2014, 125, 181-188.	5.5	22
95	Pathogens and host immunity in the ancient human oral cavity. Nature Genetics, 2014, 46, 336-344.	21.4	482
96	Unlocking Ancient Protein Palimpsests. Science, 2014, 343, 1320-1322.	12.6	66
97	The genome of a Late Pleistocene human from a Clovis burial site in western Montana. Nature, 2014, 506, 225-229.	27.8	500
98	Faunal record identifies Bering isthmus conditions as constraint to end-Pleistocene migration to the New World. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132167.	2.6	78
99	Modeling Deamidation in Sheep α-Keratin Peptides and Application to Archeological Wool Textiles. Analytical Chemistry, 2014, 86, 567-575.	6.5	35
100	Late persistence of the Acheulian in southern Britain in an MIS 8 interstadial: evidence from Harnham, Wiltshire. Quaternary Science Reviews, 2014, 101, 159-176.	3.0	32
101	Species identification by peptide mass fingerprinting (PMF) in fibre products preserved by association with copper-alloy artefacts. Journal of Archaeological Science, 2014, 49, 524-535.	2.4	35
102	Searching for Scandinavians in pre-Viking Scotland: molecular fingerprinting of Early Medieval combs. Journal of Archaeological Science, 2014, 41, 1-6.	2.4	72
103	Walking on Eggshells: A Study of Egg Use in Anglo‣candinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology, 2014, 24, 247-255.	1.2	20
104	Direct evidence of milk consumption from ancient human dental calculus. Scientific Reports, 2014, 4, 7104.	3.3	184
105	Long-Term Resilience of Late Holocene Coastal Subsistence System in Southeastern South America. PLoS ONE, 2014, 9, e93854.	2.5	67
106	Testing the limitations of artificial protein degradation kinetics using known-age massive Porites coral skeletons. Quaternary Geochronology, 2013, 16, 87-109.	1.4	44
107	Results from an amino acid racemization inter-laboratory proficiency study; design and performance evaluation. Quaternary Geochronology, 2013, 16, 183-197.	1.4	23
108	Characterisation and dynamics of dissolved organic matter in the Northwestern Mediterranean Sea. Progress in Oceanography, 2013, 119, 78-89.	3.2	13

#	Article	IF	CITATIONS
109	ZooMS: making eggshell visible in the archaeological record. Journal of Archaeological Science, 2013, 40, 1797-1804.	2.4	48
110	Characterisation of novel αâ€keratin peptide markers for species identification in keratinous tissues using mass spectrometry. Rapid Communications in Mass Spectrometry, 2013, 27, 2685-2698.	1.5	46
111	An aminostratigraphy for the British Quaternary based on Bithynia opercula. Quaternary Science Reviews, 2013, 61, 111-134.	3.0	95
112	Proteomic evaluation of the biodegradation of wool fabrics in experimental burials. International Biodeterioration and Biodegradation, 2013, 80, 48-59.	3.9	48
113	Isolation of the intra-crystalline proteins and kinetic studies in Struthio camelus (ostrich) eggshell for amino acid geochronology. Quaternary Geochronology, 2013, 16, 110-128.	1.4	43
114	Intra-crystalline protein diagenesis (IcPD) in Patella vulgata. Part II: Breakdown and temperature sensitivity. Quaternary Geochronology, 2013, 16, 158-172.	1.4	38
115	New Experimental Evidence for In-Chain Amino Acid Racemization of Serine in a Model Peptide. Analytical Chemistry, 2013, 85, 5835-5842.	6.5	30
116	Comparison of isotopic variability in proteinaceous tissues of a domesticated herbivore: a baseline for zooarchaeological investigation. Rapid Communications in Mass Spectrometry, 2013, 27, 2601-2615.	1.5	13
117	Amino Acid Racemization, Paleoclimate. , 2013, , 1-3.		0
118	Siteâ€specific deamidation of glutamine: a new marker of bone collagen deterioration. Rapid Communications in Mass Spectrometry, 2012, 26, 2319-2327.	1.5	124
119	Assessing the Extent of Bone Degradation Using Glutamine Deamidation in Collagen. Analytical Chemistry, 2012, 84, 9041-9048.	6.5	110
120	Ancient biomolecules in Quaternary palaeoecology. Quaternary Science Reviews, 2012, 33, 1-13.	3.0	50
121	Soil proteomics: An assessment of its potential for archaeological site interpretation. Organic Geochemistry, 2012, 50, 57-67.	1.8	16
122	The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4724-4733.	2.6	478
123	A novel method for integrated age and sex determination from archaeological cattle mandibles. Journal of Archaeological Science, 2012, 39, 3324-3330.	2.4	10
124	Assessing amino acid racemization variability in coral intra-crystalline protein for geochronological applications. Geochimica Et Cosmochimica Acta, 2012, 86, 338-353.	3.9	56
125	Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Die Naturwissenschaften, 2012, 99, 617-626.	1.6	315
126	Proteomic Analysis of a Pleistocene Mammoth Femur Reveals More than One Hundred Ancient Bone Proteins. Journal of Proteome Research, 2012, 11, 917-926.	3.7	196

#	Article	IF	CITATIONS
127	Protein and mineral characterisation of rendered meat and bone meal. Food Chemistry, 2012, 134, 1267-1278.	8.2	11
128	What Happened Here? Bone Histology as a Tool in Decoding the Postmortem Histories of Archaeological Bone from Castricum, The Netherlands. International Journal of Osteoarchaeology, 2012, 22, 537-548.	1.2	99
129	A chronological framework for the British Quaternary based on Bithynia opercula. Nature, 2011, 476, 446-449.	27.8	131
130	Mammoth and Mastodon collagen sequences; survival and utility. Geochimica Et Cosmochimica Acta, 2011, 75, 2007-2016.	3.9	82
131	Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate format to identify fish bone fragments. Journal of Archaeological Science, 2011, 38, 1502-1510.	2.4	103
132	Exceptional preservation of a prehistoric human brain from Heslington, Yorkshire, UK. Journal of Archaeological Science, 2011, 38, 1641-1654.	2.4	38
133	Collagen survival and its use for species identification in Holocene-lower Pleistocene bone fragments from British archaeological and paleontological sites. Antiqua, 2011, 1, 1.	3.0	81
134	CONSTRUCTION OF THE KHOJA ZAYNUDDIN MOSQUE: USE OF ANIMAL GLUE MODIFIED WITH URINE*. Archaeometry, 2011, 53, 830-841.	1.3	6
135	A novel and non-destructive approach for ZooMS analysis: ammonium bicarbonate buffer extraction. Archaeological and Anthropological Sciences, 2011, 3, 281-289.	1.8	80
136	Proteomics and Coast Salish blankets: a tale of shaggy dogs?. Antiquity, 2011, 85, 1418-1432.	1.0	60
137	Ancient starch: Cooked or just old?. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E145, author reply E146.	7.1	58
138	Alzheimer's disease and amyloid β-peptide deposition in the brain: a matter of â€~aging'?. Biochemical Society Transactions, 2010, 38, 539-544.	3.4	15
139	A multidisciplinary study of archaeological grape seeds. Die Naturwissenschaften, 2010, 97, 205-217.	1.6	82
140	The impact of random natural variability on aspartic acid racemization ratios in enamel from different types of human teeth. Forensic Science International, 2010, 200, 148-152.	2.2	12
141	Mineralization of the metre-long biosilica structures of glass sponges is templated on hydroxylated collagen. Nature Chemistry, 2010, 2, 1084-1088.	13.6	149
142	Sorting the butchered from the boiled. Journal of Archaeological Science, 2010, 37, 62-69.	2.4	54
143	Distinguishing between archaeological sheep and goat bones using a single collagen peptide. Journal of Archaeological Science, 2010, 37, 13-20.	2.4	270
144	Automated classification of starch granules using supervised pattern recognition of morphological properties. Journal of Archaeological Science, 2010, 37, 594-604.	2.4	43

#	Article	IF	CITATIONS
145	Amino acid geochronology of the type Cromerian of West Runton, Norfolk, UK. Quaternary International, 2010, 228, 25-37.	1.5	36
146	Clarification of the taxonomic relationship of the extant and extinct ovibovids, Ovibos, Praeovibos, Euceratherium and Bootherium. Quaternary Science Reviews, 2010, 29, 2123-2130.	3.0	17
147	Is amino acid racemization a useful tool for screening for ancient DNA in bone?. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2971-2977.	2.6	71
148	An evaluation of the reactivity of synthetic and natural apatites in the presence of aqueous metals. Science of the Total Environment, 2009, 407, 2953-2965.	8.0	66
149	Age estimation of archaeological remains using amino acid racemization in dental enamel: A comparison of morphological, biochemical, and known agesâ€atâ€death. American Journal of Physical Anthropology, 2009, 140, 244-252.	2.1	30
150	Archaeological collagen: Why worry about collagen diagenesis?. Archaeological and Anthropological Sciences, 2009, 1, 31-42.	1.8	125
151	Preservation of ancient DNA in thermally damaged archaeological bone. Die Naturwissenschaften, 2009, 96, 267-278.	1.6	62
152	Species identification by analysis of bone collagen using matrixâ€assisted laser desorption/ionisation timeâ€ofâ€flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 3843-3854.	1.5	467
153	Mid-Holocene vertebrate bone Concentration-Lagerstäte on oceanic island Mauritius provides a window into the ecosystem of the dodo (Raphus cucullatus). Quaternary Science Reviews, 2009, 28, 14-24.	3.0	56
154	Starch granules, dental calculus and new perspectives on ancient diet. Journal of Archaeological Science, 2009, 36, 248-255.	2.4	131
155	Recovery of DNA from archaeological insect remains: first results, problems and potential. Journal of Archaeological Science, 2009, 36, 1179-1183.	2.4	26
156	Towards the application of desorption electrospray ionisation mass spectrometry (DESI-MS) to the analysis of ancient proteins from artefacts. Journal of Archaeological Science, 2009, 36, 2145-2154.	2.4	41
157	A method of isolating the collagen (I) α2 chain carboxytelopeptide for species identification in bone fragments. Analytical Biochemistry, 2008, 374, 325-334.	2.4	60
158	Diagnosing post-mortem treatments which inhibit DNA amplification from US MIAs buried at the Punchbowl. Forensic Science International, 2008, 178, 171-177.	2.2	12
159	The application of amino acid racemization in the acid soluble fraction of enamel to the estimation of the age of human teeth. Forensic Science International, 2008, 175, 11-16.	2.2	44
160	A New Approach to Amino Acid Racemization in Enamel: Testing of a Less Destructive Sampling Methodology*. Journal of Forensic Sciences, 2008, 53, 910-916.	1.6	8
161	Comparing the survival of osteocalcin and mtDNA in archaeological bone from four European sites. Journal of Archaeological Science, 2008, 35, 1756-1764.	2.4	73
162	Molecular organic matter in speleothems and its potential as an environmental proxy. Quaternary Science Reviews, 2008, 27, 905-921.	3.0	63

#	Article	IF	CITATIONS
163	Closed-system behaviour of the intra-crystalline fraction of amino acids in mollusc shells. Quaternary Geochronology, 2008, 3, 2-25.	1.4	177
164	Comment on "Protein Sequences from Mastodon and <i>Tyrannosaurus rex</i> Revealed by Mass Spectrometry". Science, 2008, 319, 33-33.	12.6	127
165	Testing the aminostratigraphy of fluvial archives: the evidence from intra-crystalline proteins within freshwater shells. Quaternary Science Reviews, 2007, 26, 2958-2969.	3.0	88
166	Bone diagenesis in the European Holocene I: patterns and mechanisms. Journal of Archaeological Science, 2007, 34, 1485-1493.	2.4	161
167	Bone diagenesis in the European Holocene II: taphonomic and environmental considerations. Journal of Archaeological Science, 2007, 34, 1523-1531.	2.4	153
168	Whole-Genome Shotgun Sequencing of Mitochondria from Ancient Hair Shafts. Science, 2007, 317, 1927-1930.	12.6	220
169	Ancient Biomolecules from Deep Ice Cores Reveal a Forested Southern Greenland. Science, 2007, 317, 111-114.	12.6	393
170	Structural and chemical changes of thermally treated bone apatite. Journal of Materials Science, 2007, 42, 9807-9816.	3.7	110
171	Beyond the grave: variability in Neolithic diets in Southern Germany?. Journal of Archaeological Science, 2006, 33, 39-48.	2.4	84
172	Assessing the distribution of Asian Palaeolithic sites: a predictive model of collagen degradation. Journal of Archaeological Science, 2006, 33, 971-986.	2.4	12
173	Insights into the processes behind the contamination of degraded human teeth and bone samples with exogenous sources of DNA. International Journal of Osteoarchaeology, 2006, 16, 156-164.	1.2	59
174	The earliest record of human activity in northern Europe. Nature, 2005, 438, 1008-1012.	27.8	390
175	Long-term survival of ancient DNA in Egypt: Response to Zink and Nerlich (2003). American Journal of Physical Anthropology, 2005, 128, 110-114.	2.1	40
176	Did the first farmers of central and eastern Europe produce dairy foods?. Antiquity, 2005, 79, 882-894.	1.0	140
177	Evidence for mummification in Bronze Age Britain. Antiquity, 2005, 79, 529-546.	1.0	83
178	Osteocalcin protein sequences of Neanderthals and modern primates. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4409-4413.	7.1	85
179	Assessing the distribution of African Palaeolithic sites: a predictive model of collagen degradation. Journal of Archaeological Science, 2005, 32, 157-166.	2.4	23
180	The identification of prehistoric dairying activities in the Western Isles of Scotland: an integrated biomolecular approach. Journal of Archaeological Science, 2005, 32, 91-103.	2.4	63

#	Article	IF	CITATIONS
181	Diagenesis and survival of osteocalcin in archaeological bone. Journal of Archaeological Science, 2005, 32, 105-113.	2.4	62
182	Biochemical and physical correlates of DNA contamination in archaeological human bones and teeth excavated at Matera, Italy. Journal of Archaeological Science, 2005, 32, 785-793.	2.4	92
183	An assessment of the microbial contribution to aquatic dissolved organic nitrogen using amino acid enantiomeric ratios. Organic Geochemistry, 2005, 36, 1099-1107.	1.8	23
184	Molecular phylogeny of the extinct cave lion Panthera leo spelaea. Molecular Phylogenetics and Evolution, 2004, 30, 841-849.	2.7	131
185	Characterisation of microbial attack on archaeological bone. Journal of Archaeological Science, 2004, 31, 87-95.	2.4	308
186	Small-angle X-ray scattering: a high-throughput technique for investigating archaeological bone preservation. Journal of Archaeological Science, 2004, 31, 1349-1359.	2.4	19
187	Age estimation based on aspartic acid racemization in elastin from the yellow ligaments. International Journal of Legal Medicine, 2003, 117, 96-101.	2.2	68
188	Lipid distribution in a subtropical southern China stalagmite as a record of soil ecosystem response to paleoclimate change. Quaternary Research, 2003, 60, 340-347.	1.7	81
189	The thermal history of human fossils and the likelihood of successful DNA amplification. Journal of Human Evolution, 2003, 45, 203-217.	2.6	227
190	Aspartic acid racemization: evidence for marked longevity of elastin in human skin. British Journal of Dermatology, 2003, 149, 951-959.	1.5	133
191	Long-term trends in the survival of immunological epitopes entombed in fossil brachiopod skeletons. Organic Geochemistry, 2003, 34, 89-96.	1.8	13
192	A practical approach to the identification of low temperature heated bone using TEM. Journal of Archaeological Science, 2003, 30, 1393-1399.	2.4	75
193	Milk Jugs' and other Myths of the Copper Age of Central Europe. European Journal of Archaeology, 2003, 6, 251-265.	0.5	4
194	â€~Milk Jugs' and Other Myths of the Copper Age of Central Europe'. European Journal of Archaeology, 2003, 6, 251-265.	0.5	15
195	Sequence preservation of osteocalcin protein and mitochondrial DNA in bison bones older than 55 ka. Geology, 2002, 30, 1099.	4.4	73
196	The Removal of Protein from Mineral Surfaces: Implications for Residue Analysis of Archaeological Materials. Journal of Archaeological Science, 2002, 29, 1077-1082.	2.4	54
197	Racemization of aspartic acid in human proteins. Ageing Research Reviews, 2002, 1, 43-59.	10.9	165
198	Sub-micron spongiform porosity is the major ultra-structural alteration occurring in archaeological bone. International Journal of Osteoarchaeology, 2002, 12, 407-414.	1.2	93

#	Article	IF	CITATIONS
199	Microfocus Small Angle X-ray Scattering Reveals Structural Features in Archaeological Bone Samples; Detection of Changes in Bone Mineral Habit and Size. Calcified Tissue International, 2002, 70, 103-110.	3.1	46
200	Bone preservation and DNA amplification. Archaeometry, 2002, 44, 395-404.	1.3	133
201	The survival of organic matter in bone: a review. Archaeometry, 2002, 44, 383-394.	1.3	487
202	The strange case of Apigliano: early 'fossilization' of medieval bone in southern Italy. Archaeometry, 2002, 44, 405-415.	1.3	49
203	The taphonomy of cooked bone: characterizing boiling and its physico-chemical effects. Archaeometry, 2002, 44, 485-494.	1.3	127
204	The Use of Smallâ€Angle Xâ€Ray Diffraction Studies for the Analysis of Structural Features in Archaeological Samples. Archaeometry, 2001, 43, 117-129.	1.3	64
205	Not just old but old and cold?. Nature, 2001, 410, 771-772.	27.8	186
206	A preliminary investigation of the application of differential scanning calorimetry to the study of collagen degradation in archaeological bone. Thermochimica Acta, 2000, 365, 129-139.	2.7	62
207	An improved method for the immunological detection of mineral bound protein using hydrofluoric acid and direct capture. Journal of Immunological Methods, 2000, 236, 89-97.	1.4	51
208	Quality assurance in age estimation based on aspartic acid racemisation. International Journal of Legal Medicine, 2000, 114, 83-86.	2.2	58
209	Age estimation: The state of the art in relation to the specific demands of forensic practise. International Journal of Legal Medicine, 2000, 113, 129-136.	2.2	403
210	Detecting milk proteins in ancient pots. Nature, 2000, 408, 312-312.	27.8	79
211	Slow rates of degradation of osteocalcin: Green light for fossil bone protein?. Geology, 2000, 28, 1139-1142.	4.4	8
212	A review of the methodological aspects of aspartic acid racemization analysis for use in forensic science. Forensic Science International, 1999, 103, 113-124.	2.2	55
213	Hydroxyproline interference during the gas chromatographic analysis of D/L aspartic acid in human dentine. International Journal of Legal Medicine, 1999, 112, 124-131.	2.2	16
214	Predicting protein decomposition: the case of aspartic–acid racemization kinetics. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 51-64.	4.0	147
215	"Improvement" of Age Estimation Using Amino Acid Racemization in a Case of Pink Teeth. American Journal of Forensic Medicine and Pathology, 1999, 20, 216-217.	0.8	2
216	Commentary on Ohtani S, Matsushima Y, Kobayashi Y, Kishi K. Evaluation of Aspartic Acid Racemization Ratios in the Human Femur for Age Estimation. J Forensic Sci 1998;54(5):949–953. Journal of Forensic Sciences, 1999, 44, 874-875.	1.6	2

#	Article	IF	CITATIONS
217	Evaluation of aspartic acid racemization ratios in the human femur for age estimation. Journal of Forensic Sciences, 1999, 44, 874-6.	1.6	4
218	The effects of conformational constraints on aspartic acid racemization. Organic Geochemistry, 1998, 29, 1227-1232.	1.8	48
219	The Geochemical Fate of Proteins. ACS Symposium Series, 1998, , 74-87.	0.5	9
220	The significance of a geochemically isolated intracrystalline organic fraction within biominerals. Organic Geochemistry, 1995, 23, 1059-1065.	1.8	141
221	A Basic Mathematical Simulation of the Chemical Degradation of Ancient Collagen. Journal of Archaeological Science, 1995, 22, 175-183.	2.4	189
222	Sorption by mineral surfaces: Rebirth of the classical condensation pathway for kerogen formation?. Geochimica Et Cosmochimica Acta, 1995, 59, 2387-2391.	3.9	112
223	The polymer model of collagen degradation. Polymer Degradation and Stability, 1994, 46, 93-97.	5.8	5
224	Molecules and morphology $\hat{a} \in \tilde{~}$ the practical approach. Lethaia, 1993, 26, 5-6.	1.4	2
225	World archaeology and global change: Did our ancestors ignite the Ice Age?. World Archaeology, 1993, 25, 122-133.	1.1	17
226	Preservation of the bone protein osteocalcin in dinosaurs. Geology, 1992, 20, 871.	4.4	70
227	Biology of Living Brachiopods. Advances in Marine Biology, 1992, 28, 175-387.	1.4	149
228	Experimental evidence for condensation reactions between sugars and proteins in carbonate skeletons. Geochimica Et Cosmochimica Acta, 1992, 56, 1539-1544.	3.9	59
229	Growth rate and substrate-related mortality of a benthic brachiopod population. Lethaia, 1991, 24, 1-11.	1.4	26
230	Immunological responses from brachiopod skeletal macromolecules; a new technique for assessing taxonomic relationships using shells. Lethaia, 1991, 24, 399-407.	1.4	10
231	Preservation of fossil biopolymeric structures: Conclusive immunological evidence. Geochimica Et Cosmochimica Acta, 1991, 55, 2253-2257.	3.9	38
232	Preservation of Organic Biomolecules. Topics in Geobiology, 1991, , 1-24.	0.5	7
233	Redescription of Uca Sindensis (Alcock, 1900) (Brachyura: Ocypodidae) with Notes on the Ecology of a Population from Kuwait. Journal of Crustacean Biology, 1984, 4, 318-328.	0.8	12
234	Next Generation Lab puts Denmark's past in the hands of its future. Antiquity, 0, , 1-8.	1.0	2