
Tomoyuki Kuwaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9204878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Involvement of A5/A7 noradrenergic neurons and B2 serotonergic neurons in nociceptive processing: a fiber photometry study. Neural Regeneration Research, 2022, 17, 881.	3.0	4
2	Multifaceted roles of orexin neurons in mediating methamphetamine-induced changes in body temperature and heart rate. IBRO Neuroscience Reports, 2022, 12, 108-120.	1.6	2
3	Activity of putative orexin neurons during cataplexy. Molecular Brain, 2022, 15, 21.	2.6	7
4	A13 dopamine cell group in the zona incerta is a key neuronal nucleus in nociceptive processing. Neural Regeneration Research, 2021, 16, 1415.	3.0	4
5	Sexual excitation induces courtship ultrasonic vocalizations and cataplexy-like behavior in orexin neuron-ablated male mice. Communications Biology, 2021, 4, 165.	4.4	8
6	Orexinergic descending inhibitory pathway mediates linalool odor-induced analgesia in mice. Scientific Reports, 2021, 11, 9224.	3.3	10
7	Linalool odorâ€induced analgesia is triggered by TRPA1-independent pathway in mice. Behavioral and Brain Functions, 2021, 17, 3.	3.3	9
8	Orexin (hypocretin) participates in central autonomic regulation during fight-or-flight response. Peptides, 2021, 139, 170530.	2.4	19
9	Aversive emotion rapidly activates orexin neurons and increases heart rate in freely moving mice. Molecular Brain, 2021, 14, 104.	2.6	13
10	Transient Receptor Potential Ankyrin 1 Mediates Hypoxic Responses in Mice. Frontiers in Physiology, 2020, 11, 576209.	2.8	7
11	Transcriptomic Evaluation of Pulmonary Fibrosis-Related Genes: Utilization of Transgenic Mice with Modifying p38 Signal in the Lungs. International Journal of Molecular Sciences, 2020, 21, 6746.	4.1	9
12	Involvement of the Nucleus Accumbens in Chocolate-induced Cataplexy. Scientific Reports, 2020, 10, 4958.	3.3	10
13	Involvement of supralemniscal nucleus (B9) 5-HT neuronal system in nociceptive processing: a fiber photometry study. Molecular Brain, 2020, 13, 14.	2.6	6
14	Involvement of A13 dopaminergic neurons located in the zona incerta in nociceptive processing: a fiber photometry study. Molecular Brain, 2020, 13, 60.	2.6	10
15	Orexin Receptor Blockade-Induced Sleep Preserves the Ability to Wake in the Presence of Threat in Mice. Frontiers in Behavioral Neuroscience, 2019, 12, 327.	2.0	7
16	Acute nociceptive stimuli rapidly induce the activity of serotonin and noradrenalin neurons in the brain stem of awake mice. IBRO Reports, 2019, 7, 1-9.	0.3	13
17	Involvement of orexin neurons in fasting- and central adenosine-induced hypothermia. Scientific Reports, 2018, 8, 2717.	3.3	24
18	Linalool Odor-Induced Anxiolytic Effects in Mice. Frontiers in Behavioral Neuroscience, 2018, 12, 241.	2.0	64

Τομογικι Κυωακι

#	Article	IF	CITATIONS
19	Acute Aversive Stimuli Rapidly Increase the Activity of Ventral Tegmental Area Dopamine Neurons in Awake Mice. Neuroscience, 2018, 386, 16-23.	2.3	28
20	Inactivation of Serotonergic Neurons in the Rostral Medullary Raphé Attenuates Stress-Induced Tachypnea and Tachycardia in Mice. Frontiers in Physiology, 2018, 9, 832.	2.8	16
21	Application of calibrated forceps for assessing mechanical nociception with high time resolution in mice. PLoS ONE, 2017, 12, e0172461.	2.5	5
22	Orexin and Central Modulation of Cardiovascular and Respiratory Function. Current Topics in Behavioral Neurosciences, 2016, 33, 157-196.	1.7	37
23	Vagal afferent activation induces salivation and swallowing-like events in anesthetized rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R964-R970.	1.8	3
24	The integrated ultradian organization of behavior and physiology in mice and the contribution of orexin to the ultradian patterning. Neuroscience, 2016, 334, 119-133.	2.3	16
25	Odour-induced analgesia mediated by hypothalamic orexin neurons in mice. Scientific Reports, 2016, 6, 37129.	3.3	34
26	Nasal TRPA1 mediates irritantâ€induced bradypnea in mice. Physiological Reports, 2016, 4, e13098.	1.7	12
27	Thermoregulation under pressure: a role for orexin neurons. Temperature, 2015, 2, 379-391.	3.0	36
28	Intermittent but not sustained hypoxia activates orexin-containing neurons in mice. Respiratory Physiology and Neurobiology, 2015, 206, 11-14.	1.6	14
29	Orexin neurons are indispensable for prostaglandin E ₂ â€induced fever and defence against environmental cooling in mice. Journal of Physiology, 2013, 591, 5623-5643.	2.9	36
30	TRPA1 detects environmental chemicals and induces avoidance behavior and arousal from sleep. Scientific Reports, 2013, 3, 3100.	3.3	20
31	The Impact of Hypothermia on Emergence from Isoflurane Anesthesia in Orexin Neuron-Ablated Mice. Anesthesia and Analgesia, 2013, 116, 1001-1005.	2.2	10
32	Avoidance of environmental gas irritants mediated by TRPA1. FASEB Journal, 2013, 27, 1124.2.	0.5	0
33	Orexin Neurons and Emotional Stress. Vitamins and Hormones, 2012, 89, 135-158.	1.7	20
34	Role of orexin neurons in prostaglandin E2â€induced fever and the defense against environmental cooling. FASEB Journal, 2012, 26, 891.2.	0.5	1
35	TRPA1 underlies a sensing mechanism for O2. Nature Chemical Biology, 2011, 7, 701-711.	8.0	235
36	Orexin links emotional stress to autonomic functions. Autonomic Neuroscience: Basic and Clinical, 2011, 161, 20-27.	2.8	81

3

Томоуикі Кишакі

#	Article	IF	CITATIONS
37	Possible participation of extracellular calcium-sensing receptor in blood pressure regulation in rats. Brain Research, 2011, 1367, 181-187.	2.2	5
38	A key role of orexin (hypocretin) neurons in the fight-or-flight response. , 2011, , 15-17.		2
39	Orexin neurons as arousal-associated modulators of central cardiorespiratory regulation. Respiratory Physiology and Neurobiology, 2010, 174, 43-54.	1.6	41
40	Orexin neurons are indispensable for stress-induced thermogenesis in mice. Journal of Physiology, 2010, 588, 4117-4129.	2.9	107
41	Hypothalamic Modulation of Breathing. Advances in Experimental Medicine and Biology, 2010, 669, 243-247.	1.6	29
42	CO2 activates orexin-containing neurons in mice. Respiratory Physiology and Neurobiology, 2009, 166, 184-186.	1.6	84
43	Attenuated phrenic long-term facilitation in orexin neuron-ablated mice. Respiratory Physiology and Neurobiology, 2009, 168, 295-302.	1.6	22
44	Orexin neurons in the hypothalamus mediate cardiorespiratory responses induced by disinhibition of the amygdala and bed nucleus of the stria terminalis. Brain Research, 2009, 1262, 25-37.	2.2	70
45	Lack of handling stressâ€induced hyperthermia in orexin neuronâ€ablated mice. FASEB Journal, 2009, 23, 788.18.	0.5	1
46	Orexinergic modulation of breathing across vigilance states. Respiratory Physiology and Neurobiology, 2008, 164, 204-212.	1.6	72
47	Emotional and state-dependent modification of cardiorespiratory function: Role of orexinergic neurons. Autonomic Neuroscience: Basic and Clinical, 2008, 142, 11-16.	2.8	39
48	Ventilatory long-term facilitation in mice can be observed during both sleep and wake periods and depends on orexin. Journal of Applied Physiology, 2008, 104, 499-507.	2.5	79
49	Vigilance state-dependent attenuation of hypercapnic chemoreflex and exaggerated sleep apnea in orexin knockout mice. Journal of Applied Physiology, 2007, 102, 241-248.	2.5	140
50	Contribution of orexin in hypercapnic chemoreflex: evidence from genetic and pharmacological disruption and supplementation studies in mice. Journal of Applied Physiology, 2007, 103, 1772-1779.	2.5	103
51	Multiple components of the defense response depend on orexin: Evidence from orexin knockout mice and orexin neuron-ablated mice. Autonomic Neuroscience: Basic and Clinical, 2006, 126-127, 139-145.	2.8	51
52	Orexin neuron-mediated skeletal muscle vasodilation and shift of baroreflex during defense response in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R1654-R1663.	1.8	95
53	Persistent pain and stress activate pain-inhibitory orexin pathways. NeuroReport, 2005, 16, 5-8.	1.2	143
54	Sympatho-Inhibitory Action of Endogenous Adrenomedullin Through Inhibition of Oxidative Stress in the Brain. Hypertension, 2005, 45, 1165-1172.	2.7	42

Τομογικι Κυωακι

#	Article	IF	CITATIONS
55	From The Cover: Dysregulation of TGF-Â1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15791-15796.	7.1	413
56	Respiratory and cardiovascular actions of orexin-A in mice. Neuroscience Letters, 2005, 385, 131-136.	2.1	87
57	Sleep apnea in mice: a useful animal model for study of SIDS?. Pathophysiology, 2004, 10, 253-257.	2.2	4
58	Attenuated defense response and low basal blood pressure in orexin knockout mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 285, R581-R593.	1.8	285
59	Sleep apnea and effect of chemostimulation on breathing instability in mice. Journal of Applied Physiology, 2003, 94, 525-532.	2.5	65
60	Elevated Sympathetic Nervous Activity in Mice Deficient in αCGRP. Circulation Research, 2001, 89, 983-990.	4.5	151
61	Responses of Blood Pressure and Catecholamine Metabolism to High Salt Loading in Endothelin-1 Knockout Mice Hypertension Research, 1999, 22, 11-16.	2.7	8
62	Renal sympathetic nerve activity in mice: comparison between mice and rats and between normal and endothelin-1 deficient mice. Brain Research, 1998, 808, 238-249.	2.2	51
63	Differential Central Modulation of the Baroreflex by Salt Loading in Normotensive and Spontaneously Hypertensive Rats. Hypertension, 1997, 29, 808-814.	2.7	39
64	Elevated blood pressure and craniofaclal abnormalities in mice deficient in endothelin-1. Nature, 1994, 368, 703-710.	27.8	997
65	Endothelin-sensitive areas in the ventral surface of the rat medulla. Journal of the Autonomic Nervous System, 1991, 36, 149-158.	1.9	18
66	Modulatory effects of endothelin-1 on central cardiovascular control in rats The Japanese Journal of Physiology, 1990, 40, 827-841.	0.9	25
67	Modulatory effects of rat endothelin on central cardiovascular control in rats The Japanese Journal of Physiology, 1990, 40, 97-116.	0.9	29