Beth Stevens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9204762/publications.pdf Version: 2024-02-01

RETH STEVENS

#	Article	IF	CITATIONS
1	Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541, 481-487.	27.8	4,977
2	Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner. Neuron, 2012, 74, 691-705.	8.1	3,040
3	The Classical Complement Cascade Mediates CNS Synapse Elimination. Cell, 2007, 131, 1164-1178.	28.9	2,567
4	Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 2016, 352, 712-716.	12.6	2,237
5	Schizophrenia risk from complex variation of complement component 4. Nature, 2016, 530, 177-183.	27.8	1,915
6	Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. Immunity, 2019, 50, 253-271.e6.	14.3	1,351
7	Microglia emerge as central players in brain disease. Nature Medicine, 2017, 23, 1018-1027.	30.7	1,208
8	The Complement System: An Unexpected Role in Synaptic Pruning During Development and Disease. Annual Review of Neuroscience, 2012, 35, 369-389.	10.7	876
9	The Role of Microglia in the Healthy Brain: Figure 1 Journal of Neuroscience, 2011, 31, 16064-16069.	3.6	800
10	Microglia: Dynamic Mediators of Synapse Development and Plasticity. Trends in Immunology, 2015, 36, 605-613.	6.8	537
11	A complement–microglial axis drives synapse loss during virus-induced memory impairment. Nature, 2016, 534, 538-543.	27.8	534
12	The "quadâ€partite―synapse: Microgliaâ€synapse interactions in the developing and mature CNS. Glia, 2013 61, 24-36.	³ , 4.9	458
13	New insights on the role of microglia in synaptic pruning in health and disease. Current Opinion in Neurobiology, 2016, 36, 128-134.	4.2	431
14	Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Science Translational Medicine, 2017, 9, .	12.4	401
15	Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. Journal of Clinical Investigation, 2011, 121, 1429-1444.	8.2	388
16	Do glia drive synaptic and cognitive impairment in disease?. Nature Neuroscience, 2015, 18, 1539-1545.	14.8	344
17	Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7975-7980.	7.1	332
18	Proteomic Analysis of Unbounded Cellular Compartments: Synaptic Clefts. Cell, 2016, 166, 1295-1307.e21.	28.9	324

BETH STEVENS

#	Article	IF	CITATIONS
19	CD47 Protects Synapses from Excess Microglia-Mediated Pruning during Development. Neuron, 2018, 100, 120-134.e6.	8.1	304
20	Complement <i>C3</i> -Deficient Mice Fail to Display Age-Related Hippocampal Decline. Journal of Neuroscience, 2015, 35, 13029-13042.	3.6	286
21	Microglia Function in Central Nervous System Development and Plasticity. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020545.	5.5	264
22	Neuron-Glia Signaling in Synapse Elimination. Annual Review of Neuroscience, 2019, 42, 107-127.	10.7	224
23	Immune Signaling in Neurodegeneration. Immunity, 2019, 50, 955-974.	14.3	217
24	Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO Journal, 2020, 39, e105380.	7.8	217
25	Microglia and the Brain: Complementary Partners in Development and Disease. Annual Review of Cell and Developmental Biology, 2018, 34, 523-544.	9.4	214
26	Microglia function during brain development: New insights from animal models. Brain Research, 2015, 1617, 7-17.	2.2	179
27	Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain. Nature Neuroscience, 2022, 25, 306-316.	14.8	166
28	Overexpression of schizophrenia susceptibility factor human complement C4A promotes excessive synaptic loss and behavioral changes in mice. Nature Neuroscience, 2021, 24, 214-224.	14.8	158
29	Phagocytic glial cells: sculpting synaptic circuits in the developing nervous system. Current Opinion in Neurobiology, 2013, 23, 1034-1040.	4.2	153
30	The complement cascade: Yin–Yang in neuroinflammation – neuroâ€protection and â€degeneration. Journal of Neurochemistry, 2008, 107, 1169-1187.	3.9	152
31	The Complement Control-Related Genes CSMD1 and CSMD2 Associate to Schizophrenia. Biological Psychiatry, 2011, 70, 35-42.	1.3	149
32	Nanoscale Surveillance of the Brain by Microglia via cAMP-Regulated Filopodia. Cell Reports, 2019, 27, 2895-2908.e4.	6.4	149
33	Microglia and Astrocytes in Disease: Dynamic Duo or Partners in Crime?. Trends in Immunology, 2020, 41, 820-835.	6.8	146
34	GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell, 2021, 184, 4048-4063.e32.	28.9	142
35	Astrocytes refine cortical connectivity at dendritic spines. ELife, 2014, 3, .	6.0	139
36	A Milieu Molecule for TGF-β Required for Microglia Function in the Nervous System. Cell, 2018, 174, 156-171.e16.	28.9	130

Beth Stevens

#	Article	IF	CITATIONS
37	Neuron-Astrocyte Signaling in the Development and Plasticity of Neural Circuits. NeuroSignals, 2008, 16, 278-288.	0.9	129
38	Lupus antibodies induce behavioral changes mediated by microglia and blocked by ACE inhibitors. Journal of Experimental Medicine, 2018, 215, 2554-2566.	8.5	117
39	Microglia contribute to circuit defects in Mecp2 null mice independent of microglia-specific loss of Mecp2 expression. ELife, 2016, 5, .	6.0	117
40	The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nature Communications, 2015, 6, 6121.	12.8	116
41	A map of transcriptional heterogeneity and regulatory variation in human microglia. Nature Genetics, 2021, 53, 861-868.	21.4	115
42	Synapse elimination during development and disease: immune molecules take centre stage. Biochemical Society Transactions, 2010, 38, 476-481.	3.4	113
43	Sensory Experience Engages Microglia to Shape Neural Connectivity through a Non-Phagocytic Mechanism. Neuron, 2020, 108, 451-468.e9.	8.1	106
44	A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding. EMBO Journal, 2020, 39, e104136.	7.8	103
45	An Engulfment Assay: A Protocol to Assess Interactions Between CNS Phagocytes and Neurons. Journal of Visualized Experiments, 2014, , .	0.3	90
46	Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. ELife, 2018, 7, .	6.0	86
47	New tricks for an ancient system: Physiological and pathological roles of complement in the CNS. Molecular Immunology, 2018, 102, 3-13.	2.2	85
48	Microglia: Phagocytosing to Clear, Sculpt, and Eliminate. Developmental Cell, 2016, 38, 126-128.	7.0	80
49	The contribution of glial cells to Huntington's disease pathogenesis. Neurobiology of Disease, 2020, 143, 104963.	4.4	56
50	The Role of the Classical Complement Cascade in Synapse Loss During Development and Glaucoma. Advances in Experimental Medicine and Biology, 2010, 703, 75-93.	1.6	51
51	Ocular Dominance Plasticity in Binocular Primary Visual Cortex Does Not Require C1q. Journal of Neuroscience, 2020, 40, 769-783.	3.6	46
52	Experience-Dependent Synaptic Plasticity in V1 Occurs without Microglial CX3CR1. Journal of Neuroscience, 2017, 37, 10541-10553.	3.6	45
53	Roles of microglia in nervous system development, plasticity, and disease. Developmental Neurobiology, 2018, 78, 559-560.	3.0	38
54	Pruning hypothesis comes of age. Nature, 2018, 554, 438-439.	27.8	36

BETH STEVENS

#	Article	IF	CITATIONS
55	A RIPK1-regulated inflammatory microglial state in amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	36
56	Microglial depletion disrupts normal functional development of adult-born neurons in the olfactory bulb. ELife, 2020, 9, .	6.0	35
57	How Many Cell Types Does It Take to Wire a Brain?. Science, 2011, 333, 1391-1392.	12.6	30
58	Retinal Ganglion Cell Axon Regeneration Requires Complement and Myeloid Cell Activity within the Optic Nerve. Journal of Neuroscience, 2021, 41, 8508-8531.	3.6	25
59	New Brain Lymphatic Vessels Drain Old Concepts. EBioMedicine, 2015, 2, 776-777.	6.1	21
60	Microglia: The Brain's First Responders. Cerebrum: the Dana Forum on Brain Science, 2017, 2017, .	0.1	20
61	Microglia in Neuronal Circuits. Neural Plasticity, 2013, 2013, 1-3.	2.2	18
62	The neuronal retromer can regulate both neuronal and microglial phenotypes of Alzheimer's disease. Cell Reports, 2022, 38, 110262.	6.4	17
63	Brains, Blood, and Guts: MeCP2 Regulates Microglia, Monocytes, and Peripheral Macrophages. Immunity, 2015, 42, 600-602.	14.3	14
64	Structured Illumination Microscopy for the Investigation of Synaptic Structure and Function. Methods in Molecular Biology, 2017, 1538, 155-167.	0.9	13
65	An Ultrahigh-Affinity Complement C4b-Specific Nanobody Inhibits In Vivo Assembly of the Classical Pathway Proconvertase. Journal of Immunology, 2020, 205, 1678-1694.	0.8	12
66	The complement cascade repurposed in the brain. Nature Reviews Immunology, 2021, 21, 624-625.	22.7	11
67	Report on the National Eye Institute's Audacious Goals Initiative: Creating a Cellular Environment for Neuroregeneration. ENeuro, 2018, 5, ENEURO.0035-18.2018.	1.9	9
68	A Complement C3–Specific Nanobody for Modulation of the Alternative Cascade Identifies the C-Terminal Domain of C3b as Functional in C5 Convertase Activity. Journal of Immunology, 2020, 205, 2287-2300.	0.8	9
69	TREM2: Keeping Microglia Fit during Good Times and Bad. Cell Metabolism, 2017, 26, 590-591.	16.2	8
70	Differences among astrocytes. Science, 2016, 351, 813-813.	12.6	7
71	Shedding Light on Glioma Growth. Cell, 2015, 161, 704-706.	28.9	6
72	Increasing the neurological-disease toolbox using iPSC-derived microglia. Nature Medicine, 2016, 22, 1206-1207.	30.7	6

#	Article	IF	CITATIONS
73	Developing and Mature Synapses. , 2014, , 223-248.		5
74	Editorial overview: Glial biology. Current Opinion in Neurobiology, 2017, 47, iv-vi.	4.2	1
75	O2-07-03: Complement C3-deficiency preserves hippocampal synapses and neurons with aging and improves learning and memory compared to WT mice. , 2013, 9, P328-P328.		0
76	S4-02-03: COMPLEMENT IN ALZHEIMER'S DISEASE: LESSONS FROM C3-DEFICIENT MICE. , 2014, 10, P240-P240.		0