Martin J Hardcastle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9203287/publications.pdf

Version: 2024-02-01

19657 27406 16,281 331 61 106 citations h-index g-index papers 333 333 333 6041 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sub-arcsecond imaging with the International LOFAR Telescope. Astronomy and Astrophysics, 2022, 658, A1.	5.1	42
2	The eROSITA Final Equatorial-Depth Survey (eFEDS). Astronomy and Astrophysics, 2022, 661, A13.	5.1	14
3	Unmasking the history of 3C 293 with LOFAR sub-arcsecond imaging. Astronomy and Astrophysics, 2022, 658, A6.	5.1	10
4	The LOFAR Two-metre Sky Survey. Astronomy and Astrophysics, 2022, 659, A1.	5.1	169
5	Radio AGN in nearby dwarf galaxies: the important role of AGN in dwarf galaxy evolution. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4109-4122.	4.4	22
6	The <i>Planck</i> clusters in the LOFAR sky. Astronomy and Astrophysics, 2022, 660, A78.	5.1	30
7	Finding Rare Quasars: VLA Snapshot Continuum Survey of FRI Quasar Candidates Selected from the LOFAR Two-Metre Sky Survey (LoTSS). Galaxies, 2022, 10, 2.	3.0	3
8	The galaxy group NGC 507: Newly detected AGN remnant plasma transported by sloshing. Astronomy and Astrophysics, 2022, 661, A92.	5.1	20
9	Accretion mode versus radio morphology in the LOFAR Deep Fields. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3250-3271.	4.4	22
10	The discovery of a radio galaxy of at least 5 Mpc. Astronomy and Astrophysics, 2022, 660, A2.	5.1	17
11	Faraday tomography of LoTSS-DR2 data. Astronomy and Astrophysics, 2022, 663, A7.	5.1	7
12	Cosmic evolution of low-excitation radio galaxies in the LOFAR two-metre sky survey deep fields. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3742-3767.	4.4	15
13	Relic jet activity in â€~Hanny's Voorwerp' revealed by the LOFAR two metre sky survey. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3879-3885.	4.4	6
14	Can the Local Bubble explain the radio background?. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2807-2814.	4.4	9
15	Unveiling the rarest morphologies of the LOFAR Two-metre Sky Survey radio source population with self-organised maps. Astronomy and Astrophysics, 2021, 645, A89.	5.1	22
16	Extended X-Ray Emission around FR II Radio Galaxies: Hot Spots, Lobes, and Galaxy Clusters. Astrophysical Journal, Supplement Series, 2021, 252, 31.	7.7	11
17	The LOFAR Two-metre Sky Survey Deep Fields. Astronomy and Astrophysics, 2021, 648, A6.	5.1	44
18	Low-frequency radio spectra of submillimetre galaxies in the Lockman Hole. Astronomy and Astrophysics, 2021, 648, A14.	5.1	6

#	Article	IF	CITATIONS
19	Extremely deep 150 MHz source counts from the LoTSS Deep Fields. Astronomy and Astrophysics, 2021, 648, A5.	5.1	26
20	The LOFAR LBA Sky Survey. Astronomy and Astrophysics, 2021, 648, A104.	5.1	64
21	The LOFAR Two-meter Sky Survey: Deep Fields Data Release 1. Astronomy and Astrophysics, 2021, 648, A3.	5.1	57
22	LOFAR Deep Fields: probing a broader population of polarized radio galaxies in ELAIS-N1. Astronomy and Astrophysics, 2021, 648, A12.	5.1	6
23	Diffuse radio emission from galaxy clusters in the LOFAR Two-metre Sky Survey Deep Fields. Astronomy and Astrophysics, 2021, 648, A11.	5.1	13
24	The LOFAR Two-meter Sky Survey: Deep Fields Data Release 1. Astronomy and Astrophysics, 2021, 648, A4.	5.1	55
25	The bright end of the infrared luminosity functions and the abundance of hyperluminous infrared galaxies. Astronomy and Astrophysics, 2021, 648, A8.	5.1	16
26	The contribution of discrete sources to the sky temperature at 144 MHz. Astronomy and Astrophysics, 2021, 648, A10.	5.1	26
27	The LOFAR Two-meter Sky Survey: Deep Fields Data Release 1. Astronomy and Astrophysics, 2021, 648, A2.	5.1	61
28	The LOFAR Two-meter Sky Survey: Deep Fields Data Release 1. Astronomy and Astrophysics, 2021, 648, A1.	5.1	131
29	LOFAR observations of galaxy clusters in HETDEX. Astronomy and Astrophysics, 2021, 651, A115.	5.1	71
30	MIGHTEE: are giant radio galaxies more common than we thought?. Monthly Notices of the Royal Astronomical Society, 2021, 501, 3833-3845.	4.4	24
31	MIGHTEE: total intensity radio continuum imaging and the COSMOS/XMM-LSS Early Science fields. Monthly Notices of the Royal Astronomical Society, 2021, 509, 2150-2168.	4.4	39
32	The application of ridgelines in extended radio source cross-identification. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1-15.	4.4	7
33	Investigating the spectra and physical nature of galaxy scale jets. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5972-5990.	4.4	12
34	The population of M dwarfs observed at low radio frequencies. Nature Astronomy, 2021, 5, 1233-1239.	10.1	37
35	A snapshot of the oldest active galactic nuclei feedback phases. Nature Astronomy, 2021, 5, 1261-1267.	10.1	28
36	Low frequency radio properties of the <i>z</i> â€,,>â€,,â€<5 quasar population. Astronomy and Astrophysics, 2021, 656, A137.	5.1	20

#	Article	IF	Citations
37	A low-frequency study of linear polarization in radio galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 502, 273-292.	4.4	8
38	Characterising the Extended Morphologies of BL Lacertae Objects at 144 MHz with LOFAR. Astrophysical Journal, Supplement Series, 2021, 257, 30.	7.7	5
39	Radio Morphology of Red Geysers. Astrophysical Journal, 2021, 922, 230.	4.5	8
40	Unmasking the history of 3C 293 with LOFAR subâ€arcsecond imaging. Astronomische Nachrichten, 2021, 342, 1107-1111.	1.2	0
41	Radio galaxies and feedback from AGN jets. New Astronomy Reviews, 2020, 88, 101539.	12.8	135
42	A high-resolution view of the jets in 3C 465. Monthly Notices of the Royal Astronomical Society, 2020, 496, 676-688.	4.4	4
43	Radio constraints on dark matter annihilation in Canes Venatici I with LOFARâ€. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2663-2672.	4.4	14
44	LOFAR 144-MHz follow-up observations of GW170817. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5110-5117.	4.4	6
45	The duty cycle of radio galaxies revealed by LOFAR: remnant and restarted radio source populations in the Lockman Hole. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1706-1717.	4.4	41
46	New constraints on the magnetization of the cosmic web using LOFAR Faraday rotation observations. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2607-2619.	4.4	44
47	Giant radio galaxies in the LOFAR Two-metre Sky Survey. Astronomy and Astrophysics, 2020, 635, A5.	5.1	59
48	A Markov chain Monte Carlo approach for measurement of jet precession in radio-loud active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3911-3919.	4.4	5
49	Coherent radio emission from a quiescent red dwarf indicative of star–planet interaction. Nature Astronomy, 2020, 4, 577-583.	10.1	82
50	Investigating the spectral age problem with powerful radio galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5015-5034.	4.4	21
51	One- and two-point source statistics from the LOFAR Two-metre Sky Survey first data release. Astronomy and Astrophysics, 2020, 643, A100.	5.1	18
52	The life cycle of radio galaxies in the LOFAR Lockman Hole field. Astronomy and Astrophysics, 2020, 638, A34.	5.1	42
53	Radio spectral properties and jet duty cycle in the restarted radio galaxy 3C388. Astronomy and Astrophysics, 2020, 638, A29.	5.1	24
54	Alignment in the orientation of LOFAR radio sources. Astronomy and Astrophysics, 2020, 642, A70.	5.1	6

#	Article	IF	CITATIONS
55	The LOFAR view of FR 0 radio galaxies. Astronomy and Astrophysics, 2020, 642, A107.	5.1	21
56	The great Kite in the sky: A LOFAR observation of the radio source in Abell 2626. Astronomy and Astrophysics, 2020, 643, A172.	5.1	19
57	3D hydrodynamic simulations of large-scale precessing jets: radio morphology. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5765-5781.	4.4	19
58	A population of galaxy-scale jets discovered using LOFAR. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4921-4936.	4.4	20
59	The Beautiful Mess in Abell 2255. Astrophysical Journal, 2020, 897, 93.	4.5	54
60	The origin of radio emission in broad absorption line quasars: Results from the LOFAR Two-metre Sky Survey (<i>Corrigendum</i>). Astronomy and Astrophysics, 2020, 640, C4.	5.1	0
61	Link between radio-loud AGNs and host-galaxy shape. Astronomy and Astrophysics, 2020, 644, A12.	5.1	8
62	Revisiting the Fanaroff–Riley dichotomy and radio-galaxy morphology with the LOFAR Two-Metre Sky Survey (LoTSS). Monthly Notices of the Royal Astronomical Society, 2019, 488, 2701-2721.	4.4	125
63	NGC 326: X-shaped no more. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3416-3422.	4.4	38
64	LOFAR early-time search for coherent radio emission from GRB 180706A. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3483-3492.	4.4	17
65	LOFAR Discovery of a Radio Halo in the High-redshift Galaxy Cluster PSZ2 G099.86+58.45. Astrophysical Journal Letters, 2019, 881, L18.	8.3	14
66	Radio-loud AGN in the first LoTSS data release. Astronomy and Astrophysics, 2019, 622, A12.	5.1	101
67	Mode of accretion in episodic radio galaxies and the dynamics of their outer relic lobes. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3975-3991.	4.4	7
68	The linear bias of radio galaxies at <i>z</i> Ââ‰^Â0.3 via cosmic microwave background lensing. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 485, L1-L5.	3.3	1
69	The LoTSS view of radio AGN in the local Universe. Astronomy and Astrophysics, 2019, 622, A17.	5.1	110
70	Variability and Proper Motion of X-Ray Knots in the Jet of Centaurus A. Astrophysical Journal, 2019, 871, 248.	4.5	24
71	LoTSS/HETDEX: Optical quasars. Astronomy and Astrophysics, 2019, 622, A11.	5.1	42
72	The LOFAR Two-metre Sky Survey. Astronomy and Astrophysics, 2019, 622, A1.	5.1	369

#	Article	IF	CITATIONS
73	The LOFAR Two-metre Sky Survey. Astronomy and Astrophysics, 2019, 622, A3.	5.1	57
74	The LOFAR Two-metre Sky Survey. Astronomy and Astrophysics, 2019, 622, A2.	5.1	99
75	The origin of radio emission in broad absorption line quasars: Results from the LOFAR Two-metre Sky Survey. Astronomy and Astrophysics, 2019, 622, A15.	5.1	21
76	The intergalactic magnetic field probed by a giant radio galaxy. Astronomy and Astrophysics, 2019, 622, A16.	5.1	37
77	LOFAR observations of the XMM-LSS field. Astronomy and Astrophysics, 2019, 622, A4.	5.1	24
78	Blazars in the LOFAR Two-Metre Sky Survey first data release. Astronomy and Astrophysics, 2019, 622, A14.	5.1	12
79	LoTSS DR1: Double-double radio galaxies in the HETDEX field. Astronomy and Astrophysics, 2019, 622, A13.	5.1	41
80	The environments of radio-loud AGN from the LOFAR Two-Metre Sky Survey (LoTSS). Astronomy and Astrophysics, 2019, 622, A10.	5.1	41
81	Numerical modelling of the lobes of radio galaxies in cluster environments – IV. Remnant radio galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5807-5819.	4.4	18
82	Probing gaseous halos of galaxies with radio jets. Astronomy and Astrophysics, 2019, 627, A113.	5.1	7
83	LoTSS/HETDEX: Disentangling star formation and AGN activity in gravitationally lensed radio-quiet quasars. Astronomy and Astrophysics, 2019, 622, A18.	5.1	8
84	A LOFAR-IRAS cross-match study: the far-infrared radio correlation and the 150 MHz luminosity as a star-formation rate tracer. Astronomy and Astrophysics, 2019, 631, A109.	5.1	25
85	How frequent are close supermassive binary black holes in powerful jet sources?. Monthly Notices of the Royal Astronomical Society, 2019, 482, 240-261.	4.4	40
86	Low-frequency Radio Absorption in Tycho's Supernova Remnant. Astronomical Journal, 2019, 158, 253.	4.7	7
87	Accretion and star formation in â€~radio-quiet' quasars. Proceedings of the International Astronomical Union, 2019, 15, 204-208.	0.0	0
88	High density galaxy environments â€" the radio view. Proceedings of the International Astronomical Union, 2019, 15, 91-98.	0.0	0
89	LOFAR/H-ATLAS: the low-frequency radio luminosity–star formation rate relation. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3010-3028.	4.4	93
90	The Cocoon Shocks of Cygnus A: Pressures and Their Implications for the Jets and Lobes. Astrophysical Journal, 2018, 855, 71.	4.5	39

#	Article	IF	Citations
91	The Ultra-fast Outflow of the Quasar PG 1211+143 as Viewed by Time-averaged Chandra Grating Spectroscopy. Astrophysical Journal, 2018, 853, 165.	4.5	23
92	Discovery of an Ultraviolet Counterpart to an Ultrafast X-Ray Outflow in the Quasar PG 1211+143. Astrophysical Journal, 2018, 853, 166.	4.5	19
93	Focusing on the extended X-ray emission in 3C 459 with a <i>Chandra</i> follow-up observation. Astronomy and Astrophysics, 2018, 619, A75.	5.1	6
94	Untangling Cosmic Magnetic Fields: Faraday Tomography at Metre Wavelengths with LOFAR. Galaxies, 2018, 6, 126.	3.0	12
95	Life-cycles & Energetics of Radio-Loud AGN. Proceedings of the International Astronomical Union, 2018, 14, 122-126.	0.0	0
96	The Far-Infrared Radio Correlation at low radio frequency with LOFAR/H-ATLAS. Monthly Notices of the Royal Astronomical Society, 2018, 480, 5625-5644.	4.4	26
97	UHECR propagation from Centaurus A. Nuclear and Particle Physics Proceedings, 2018, 297-299, 234-241.	0.5	7
98	Particle content, radio-galaxy morphology, and jet power: all radio-loud AGN are not equal. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1614-1623.	4.4	90
99	Polarized point sources in the LOFAR Two-meter Sky Survey: A preliminary catalog. Astronomy and Astrophysics, 2018, 613, A58.	5.1	29
100	The X-ray ribs within the cocoon shock of Cygnus A. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4848-4860.	4.4	6
101	Studying the late evolution of a radio-loud AGN in a galaxy group with LOFAR. Monthly Notices of the Royal Astronomical Society, 2018, 474, 5023-5035.	4.4	15
102	A simulation-based analytic model of radio galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2768-2786.	4.4	84
103	LOFAR-Boötes: properties of high- and low-excitation radio galaxies at 0.5Â<ÂzÂ<Â2.0. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3429-3452.	4.4	43
104	Remnant radio-loud AGN in the Herschel-ATLAS field. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4557-4578.	4.4	47
105	A catalogue of faint local radio AGN and the properties of their host galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 479, 807-816.	4.4	7
106	Detection of non-thermal X-ray emission in the lobes and jets of Cygnus A. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4010-4029.	4.4	16
107	LOFAR reveals the giant: a low-frequency radio continuum study of the outflow in the nearby FR I radio galaxy 3C 31. Monthly Notices of the Royal Astronomical Society, 2018, 474, 5049-5067.	4.4	32
108	Faceting for direction-dependent spectral deconvolution. Astronomy and Astrophysics, 2018, 611, A87.	5.1	174

#	Article	IF	Citations
109	LOFAR MSSS: Flattening low-frequency radio continuum spectra of nearby galaxies. Astronomy and Astrophysics, 2018, 619, A36.	5.1	17
110	A SPECTACULAR BOW SHOCK IN THE 11 keV GALAXY CLUSTER AROUND 3C 438. Astrophysical Journal, 2017, 834, 159.	4.5	13
111	LOFAR MSSS: Discovery of a 2.56 Mpc giant radio galaxy associated with a disturbed galaxy group. Astronomy and Astrophysics, 2017, 601, A25.	5.1	12
112	LOFAR MSSS: The scaling relation between AGN cavity power and radio luminosity at low radio frequencies. Astronomy and Astrophysics, 2017, 605, A48.	5.1	13
113	An X-ray survey of the 2 Jy sample – II. X-ray emission from extended structures. Monthly Notices of the Royal Astronomical Society, 2017, 470, 2762-2779.	4.4	20
114	The distribution of local star formation activity as a function of galaxy stellar mass, environment and morphology. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4910-4917.	4.4	3
115	The LOFAR window on star-forming galaxies and AGNs – curved radio SEDs and IR–radio correlation at 0 <z<2.5. 2017,="" 3468-3488.<="" 469,="" astronomical="" monthly="" notices="" of="" royal="" society,="" td="" the=""><td>4.4</td><td>96</td></z<2.5.>	4.4	96
116	Observational evidence that positive and negative AGN feedback depends on galaxy mass and jet power. Monthly Notices of the Royal Astronomical Society, 2017, 471, 28-58.	4.4	19
117	A new method for finding and characterizing galaxy groups via low-frequency radio surveys. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1943-1949.	4.4	9
118	FR II radio galaxies at low frequencies $\hat{a}\in$ II. Spectral ageing and source dynamics. Monthly Notices of the Royal Astronomical Society, 2017, 469, 639-655.	4.4	35
119	Search and modelling of remnant radio galaxies in the LOFAR Lockman Hole field. Astronomy and Astrophysics, 2017, 606, A98.	5.1	61
120	Evidence that the AGN dominates the radio emission in $z\hat{A}\hat{a}^1/4\hat{A}1$ radio-quiet quasars. Monthly Notices of the Royal Astronomical Society, 2017, 468, 217-238.	4.4	43
121	Investigating the unification of LOFAR-detected powerful AGN in the Bo $\tilde{A}\P$ tes field. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1883-1896.	4.4	12
122	The LOFAR Two-metre Sky Survey. Astronomy and Astrophysics, 2017, 598, A104.	5.1	400
123	The Lockman Hole project: LOFAR observations and spectral index properties of low-frequency radio sources. Monthly Notices of the Royal Astronomical Society, 2016, 463, 2997-3020.	4.4	69
124	LOFAR FACET CALIBRATION. Astrophysical Journal, Supplement Series, 2016, 223, 2.	7.7	184
125	FR II radio galaxies at low frequencies – I. Morphology, magnetic field strength and energetics. Monthly Notices of the Royal Astronomical Society, 2016, 458, 4443-4455.	4.4	47
126	LOFAR, VLA, AND CHANDRA OBSERVATIONS OF THE TOOTHBRUSH GALAXY CLUSTER. Astrophysical Journal, 2016, 818, 204.	4.5	130

#	Article	IF	Citations
127	Numerical modelling of the lobes of radio galaxies in cluster environments – III. Powerful relativistic and non-relativistic jets. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2025-2043.	4.4	54
128	LOFAR imaging of Cygnus A $\hat{a}\in$ direct detection of a turnover in the hotspot radio spectra. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3143-3150.	4.4	53
129	LOFAR 150-MHz observations of the Bo \tilde{A} ¶tes field: catalogue and source counts. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2385-2412.	4.4	174
130	LOFAR/H-ATLAS: a deep low-frequency survey of the <i>Herschel </i> /i>-ATLAS North Galactic Pole field. Monthly Notices of the Royal Astronomical Society, 2016, 462, 1910-1936.	4.4	106
131	The MIXR sample: AGN activity versus star formation across the cross-correlation of <i>WISE </i> , 3XMM, and FIRST/NVSS. Monthly Notices of the Royal Astronomical Society, 2016, 462, 2631-2667.	4.4	71
132	LOFAR MSSS: detection of a low-frequency radio transient in 400Âh of monitoring of the North Celestial Pole. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2321-2342.	4.4	60
133	Galaxy And Mass Assembly (GAMA): the 325ÂMHz radio luminosity function of AGN and star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 457, 730-744.	4.4	31
134	Radio Galaxy Zoo: discovery of a poor cluster through a giant wide-angle tail radio galaxy. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2376-2384.	4.4	21
135	A plethora of diffuse steep spectrum radio sources in Abell 2034 revealed by LOFAR. Monthly Notices of the Royal Astronomical Society, 2016, 459, 277-290.	4.4	46
136	Deep <i>Chandra</i> observations of Pictor A. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3526-3545.	4.4	59
137	<i>Herschel</i> -ATLAS: the connection between star formation and AGN activity in radio-loud and radio-quiet active galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3776-3794.	4.4	58
138	CentaurusÂA: constraints on the nature of the giant lobe filaments from <i>XMM-Newton</i> observations. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3277-3282.	4.4	4
139	Spectral ageing in the lobes of cluster-centre FR II radio galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3403-3422.	4.4	62
140	The LOFAR Multifrequency Snapshot Sky Survey (MSSS). Astronomy and Astrophysics, 2015, 582, A123.	5.1	85
141	Black hole masses, accretion rates and hot- and cold-mode accretion in radio galaxies at z \hat{a}^4 1. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1184-1203.	4.4	24
142	Disks and Jets. Space Science Reviews, 2015, 191, 441-469.	8.1	47
143	OPTICAL DETECTION OF THE PICTOR A JET AND TIDAL TAIL: EVIDENCE AGAINST AN IC/CMB JET. Astrophysical Journal, 2015, 808, 92.	4.5	9
144	The link between accretion mode and environment in radio-loud active galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2683-2707.	4.4	59

#	Article	IF	CITATIONS
145	Unravelling lifecycles and physics of radio-loud AGN in the SKA Era. , 2015, , .		13
146	<i>SPITZER</i> MID-IR SPECTROSCOPY OF POWERFUL 2Jy AND 3CRR RADIO GALAXIES. II. AGN POWER INDICATORS AND UNIFICATION. Astrophysical Journal, 2014, 788, 98.	4.5	40
147	Internal entrainment and the origin of jet-related broad-band emission in Centaurus A. Monthly Notices of the Royal Astronomical Society, 2014, 447, 1001-1013.	4.4	38
148	The impact of a young radio galaxy: clues from the cosmic ray electron population. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1364-1380.	4.4	13
149	Very Large Baseline Array observations of MrkÂ6: probing the jet–lobe connection. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2976-2987.	4.4	34
150	The particle content of low-power radio galaxies in groups and clusters. Monthly Notices of the Royal Astronomical Society, 2014, 438, 3310-3321.	4.4	55
151	Filaments in the southern giant lobe of CentaurusÂA: constraints on nature and origin from modelling and GMRT observations. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2867-2882.	4.4	15
152	Spectral age modelling of the â€~Sausage' cluster radio relic. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1213-1222.	4.4	50
153	An X-ray survey of the 2ÂJy sample – I. Is there an accretion mode dichotomy in radio-loud AGN?. Monthly Notices of the Royal Astronomical Society, 2014, 440, 269-297.	4.4	94
154	The Wide-field Infrared Survey Explorer properties of complete samples of radio-loud active galactic nucleus. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1149-1161.	4.4	74
155	Herschel-ATLASa~: far-infrared properties of radio-loud and radio-quiet quasars. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1181-1196.	4.4	37
156	Numerical modelling of the lobes of radio galaxies in cluster environments $\hat{a} \in \mathbb{N}$ II. Magnetic field configuration and observability. Monthly Notices of the Royal Astronomical Society, 2014, 443, 1482-1499.	4.4	89
157	The temperature dependence of the far-infrared–radio correlation in the Herschel-ATLASâ~ Monthly Notices of the Royal Astronomical Society, 2014, 445, 2232-2243.	4.4	36
158	Introducing the CTA concept. Astroparticle Physics, 2013, 43, 3-18.	4.3	504
159	Synchrotron and inverse-Compton emission from radio galaxies with non-uniform magnetic field and electron distributions. Monthly Notices of the Royal Astronomical Society, 2013, 433, 3364-3372.	4.4	46
160	Numerical modelling of the lobes of radio galaxies in cluster environments. Monthly Notices of the Royal Astronomical Society, 2013, 430, 174-196.	4.4	123
161	Herschel â~ATLAS/GAMA: the environmental density of far-infrared bright galaxies at zÂ≠0.5. Monthly Notices of the Royal Astronomical Society, 2013, 433, 771-786.	4.4	12
162	A 325-MHz GMRT survey of the Herschel-ATLAS/GAMA fields. Monthly Notices of the Royal Astronomical Society, 2013, 435, 650-662.	4.4	37

#	Article	IF	CITATIONS
163	Herschel-ATLAS/GAMA: a difference between star formation rates in strong-line and weak-line radio galaxiesã Monthly Notices of the Royal Astronomical Society, 2013, 429, 2407-2424.	4.4	53
164	Spectral ageing in the lobes of FR-II radio galaxies: new methods of analysis for broad-band radio data. Monthly Notices of the Royal Astronomical Society, 2013, 435, 3353-3375.	4.4	99
165	Episodic radio galaxies J0116â^'4722 and J1158+2621: can we constrain the quiescent phase of nuclear activity?. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2137-2153.	4.4	39
166	Particle acceleration and dynamics of double–double radio galaxies: theory versus observations. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1595-1614.	4.4	33
167	THE FADING OF TWO TRANSIENT ULTRALUMINOUS X-RAY SOURCES TO BELOW THE STELLAR MASS EDDINGTON LIMIT. Astrophysical Journal, 2013, 775, 21.	4.5	8
168	RADIO-LOUD ACTIVE GALACTIC NUCLEUS: IS THERE A LINK BETWEEN LUMINOSITY AND CLUSTER ENVIRONMENT?. Astrophysical Journal, 2013, 770, 136.	4.5	41
169	SPECTRAL PROPERTIES OF X-RAY BINARIES IN CENTAURUS A. Astrophysical Journal, 2013, 766, 88.	4.5	7
170	Isothermal dust models of Herschel-ATLASa~ galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2435-2453.	4.4	44
171	Mining the Herschel-Astrophysical Terahertz Large Area Survey: submillimetre-selected blazars in equatorial fields. Monthly Notices of the Royal Astronomical Society, 2013, 430, 1566-1577.	4.4	17
172	Herschel-ATLAS/GAMA: What determines the far-infrared properties of radio galaxies?a~ Monthly Notices of the Royal Astronomical Society, 2013, 432, 609-625.	4.4	14
173	Mass entrainment and turbulence-driven acceleration of ultra-high energy cosmic rays in Centaurus A. Astronomy and Astrophysics, 2013, 558, A19.	5.1	53
174	GIANT LOBES OF CENTAURUSÂA RADIO GALAXY OBSERVED WITH THE SUZAKU X-RAY SATELLITE. Astrophysical Journal, 2013, 766, 48.	4.5	31
175	GAS SLOSHING AND RADIO GALAXY DYNAMICS IN THE CORE OF THE 3C 449 GROUP. Astrophysical Journal, 2013, 764, 83.	4.5	15
176	Large-scale components of radio galaxies in gamma rays. , 2012, , .		0
177	SHOCKS, SEYFERTS, AND THE SUPERNOVA REMNANT CONNECTION: A <i>CHANDRA</i> OBSERVATION OF THE CIRCINUS GALAXY. Astrophysical Journal, 2012, 758, 95.	4.5	34
178	A TRANSIENT SUB-EDDINGTON BLACK HOLE X-RAY BINARY CANDIDATE IN THE DUST LANES OF CENTAURUS A. Astrophysical Journal, 2012, 749, 112.	4.5	4
179	<i>CHANDRA</i> X-RAY OBSERVATIONS OF THE REDSHIFT 1.53 RADIO-LOUD QUASAR 3C 270.1. Astrophysical Journal, 2012, 745, 84.	4.5	10
180	Magnetic Fields in Astrophysical Jets: From Launch to Termination. Space Science Reviews, 2012, 169, 27-72.	8.1	78

#	Article	IF	Citations
181	<i>Herschel</i> -ATLAS: the far-infrared properties and star formation rates of broad absorption line quasi-stellar objects. Monthly Notices of the Royal Astronomical Society, 2012, 427, 1209-1218.	4.4	17
182	Star formation in high-redshift quasars: excess [O <scp>ii</scp>] emission in the radio-loud population. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2401-2410.	4.4	40
183	What determines the properties of the X-ray jets in Fanaroff-Riley type I radio galaxies?. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1368-1380.	4.4	11
184	The nature of the jet-driven outflow in the radio galaxy 3C 305. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1774-1789.	4.4	48
185	Rejuvenated radio galaxies J0041+3224 and J1835+6204: how long can the quiescent phase of nuclear activity last?. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1061-1076.	4.4	25
186	Magnetic Fields in Astrophysical Jets: From Launch to Termination. Space Sciences Series of ISSI, 2012, , 325-370.	0.0	1
187	AN ACTIVE GALACTIC NUCLEUS DRIVEN SHOCK IN THE INTRACLUSTER MEDIUM AROUND THE RADIO GALAXY 3C 310. Astrophysical Journal, 2012, 749, 19.	4.5	26
188	THE GAS DYNAMICS OF NGC 4472 REVEALED BY <i>XMM-NEWTON</i> . Astrophysical Journal, 2011, 727, 41.	4.5	44
189	A LARGE-SCALE SHOCK SURROUNDING A POWERFUL RADIO GALAXY?. Astrophysical Journal Letters, 2011, 734, L28.	8.3	44
190	THE <i>SUZAKU</i> VIEW OF THE DISK-JET CONNECTION IN THE LOW-EXCITATION RADIO GALAXY NGC 6251. Astrophysical Journal Letters, 2011, 741, L4.	8.3	6
191	MARKARIAN 6: SHOCKING THE ENVIRONMENT OF AN INTERMEDIATE SEYFERT. Astrophysical Journal, 2011, 731, 21.	4.5	49
192	Clear detection of dusty torus signatures in a weak-line radio galaxy: the case of PKS 0043â^'42. Monthly Notices of the Royal Astronomical Society, 2011, 413, 2358-2364.	4.4	10
193	Modelling TeV \hat{I}^3 -ray emission from the kiloparsec-scale jets of Centaurus A and M87. Monthly Notices of the Royal Astronomical Society, 2011, 415, 133-142.	4.4	52
194	Herschel-ATLAS: the link between accretion luminosity and star formation in quasar host galaxiesa~ Monthly Notices of the Royal Astronomical Society, 2011, , no-no.	4.4	32
195	The dynamics and environmental impact of 3C 452. Monthly Notices of the Royal Astronomical Society, 2011, 418, 811-819.	4.4	16
196	The Dynamics of Radio Galaxies and Double–Double Radio Galaxies. Journal of Astrophysics and Astronomy, 2011, 32, 477-486.	1.0	0
197	Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy. Experimental Astronomy, 2011, 32, 193-316.	3.7	640
198	Revealing the Gamma-Ray Jet in a Black Hole Binary. Science, 2011, 332, 429-430.	12.6	3

#	Article	IF	Citations
199	A FLARE IN THE JET OF PICTOR A. Astrophysical Journal Letters, 2010, 714, L213-L216.	8.3	27
200	LONG-TERM MONITORING OF THE DYNAMICS AND PARTICLE ACCELERATION OF KNOTS IN THE JET OF CENTAURUS A. Astrophysical Journal, 2010, 708, 675-697.	4.5	43
201	THE HARD X-RAY VIEW OF REFLECTION, ABSORPTION, AND THE DISK-JET CONNECTION IN THE RADIO-LOUD AGN 3C 33. Astrophysical Journal, 2010, 710, 859-868.	4.5	13
202	Herschel-ATLAS: the far-infrared-radio correlation at z < $0.5\tilde{a}$ Monthly Notices of the Royal Astronomical Society, 2010, 409, 92-101.	4.4	71
203	Herschel-ATLAS: far-infrared properties of radio-selected galaxiesã~ Monthly Notices of the Royal Astronomical Society, 2010, 409, 122-131.	4.4	20
204	X-ray emission from the extended emission-line region of the powerful radio galaxy $3C\hat{a} \in f171$. Monthly Notices of the Royal Astronomical Society, 2010, 401, 2697-2705.	4.4	26
205	Kinematics of the parsec-scale radio jet in 3C 48. Monthly Notices of the Royal Astronomical Society, 2010, 402, 87-104.	4.4	32
206	Probing evolutionary mechanisms in galaxy clusters: neutral atomic hydrogen in Abellâ \in f 1367. Monthly Notices of the Royal Astronomical Society, 2010, 403, 1175-1192.	4.4	52
207	Searching for the inverse-Compton emission from bright cluster-centre radio galaxies. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	12
208	The environments of active galactic nuclei at $3.6\hat{a} \in \hat{f}^{1/4}$ m. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	12
209	Which radio galaxies can make the highest energy cosmic rays?. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	13
210	PARSEC-SCALE IMAGING OF THE RADIO-BUBBLE SEYFERT GALAXY NGC 6764. Astrophysical Journal, 2010, 723, 580-586.	4.5	32
211	A <i>CHANDRA</i> OBSERVATION OF 3C 288—REHEATING THE COOL CORE OF A 3 keV CLUSTER FROM A NUCLEAR OUTBURST at <i>z</i> = 0.246. Astrophysical Journal, 2010, 722, 1735-1743.	4.5	11
212	Fermi Gamma-Ray Imaging of a Radio Galaxy. Science, 2010, 328, 725-729.	12.6	187
213	MODELING X–RAY EMISSION OF A STRAIGHT JET: PKS 0920-397. International Journal of Modern Physics D, 2010, 19, 879-885.	2.1	2
214	The Herschel ATLAS. Publications of the Astronomical Society of the Pacific, 2010, 122, 499-515.	3.1	489
215	LUMINOSITY FUNCTIONS OF LMXBs IN CENTAURUS A: GLOBULAR CLUSTERS VERSUS THE FIELD. Astrophysical Journal, 2009, 701, 471-480.	4.5	39
216	THE JET HEATED X-RAY FILAMENT IN THE CENTAURUS A NORTHERN MIDDLE RADIO LOBE. Astrophysical Journal, 2009, 698, 2036-2047.	4.5	41

#	Article	IF	Citations
217	Fossil Galaxy Groupsâ€"Ideal Laboratories for Studying the Effects of AGN Heating. , 2009, , .		1
218	High-energy particle acceleration and production of ultra-high-energy cosmic rays in the giant lobes of Centaurus A. Monthly Notices of the Royal Astronomical Society, 2009, 393, 1041-1053.	4.4	115
219	High-energy particle acceleration at the radio-lobe shock of Centaurus A. Monthly Notices of the Royal Astronomical Society, 2009, 395, 1999-2012.	4.4	117
220	The active nuclei of <i>z < /i> & lt; 1.0 3CRR radio sources. Monthly Notices of the Royal Astronomical Society, 2009, 396, 1929-1952.</i>	4.4	158
221	Bayesian inference of jet bulk-flow speeds in Fanaroff-Riley type II radio sources. Monthly Notices of the Royal Astronomical Society, 2009, 398, 1989-2004.	4.4	58
222	The dynamics of the giant radio galaxy 3C���2457. Monthly Notices of the Royal Astronomical Society, 2009, 400, 480-491.	4.4	23
223	3CÂ40 in AbellÂ194: can tail radio galaxies exist in a quiescent cluster?. Monthly Notices of the Royal Astronomical Society, 2008, 384, 87-93.	4.4	13
224	The nature of the ghost cavity in the NGC 741 group. Monthly Notices of the Royal Astronomical Society, 2008, 384, 1344-1354.	4.4	31
225	Inverse Compton emission from the lobes of $3C\tilde{A}$ \hat{A}	4.4	19
226	An XMM–Newton study of the environments, particle content and impact of low-power radio galaxies. Monthly Notices of the Royal Astronomical Society, 2008, 386, 1709-1728.	4.4	124
227	The properties of powerful radio sources at 90 GHz. Monthly Notices of the Royal Astronomical Society, 2008, 388, 176-186.	4.4	23
228	Observed properties of FRII quasars and radio galaxies at <i>z</i> k lt; 1.0. Monthly Notices of the Royal Astronomical Society, 2008, 390, 595-621.	4.4	75
229	â€~Normal' Fanaroff-Riley type II radio galaxies as a probe of the nature of X-shaped radio sources. Monthly Notices of the Royal Astronomical Society, 2008, 390, 1105-1116.	4.4	7
230	Shock heating in the group atmosphere of the radio galaxy B2 0838+32A. Monthly Notices of the Royal Astronomical Society, 2008, 391, 1052-1062.	4.4	17
231	A Radio through Xâ€Ray Study of the Jet/Companionâ€Galaxy Interaction in 3C 321. Astrophysical Journal, 2008, 675, 1057-1066.	4.5	41
232	Where Centaurus A Gets Its X-Ray Knottiness. Astrophysical Journal, 2008, 673, L135-L138.	4.5	31
233	<i>Chandra</i> Evidence for AGN Feedback in the Spiral Galaxy NGC 6764. Astrophysical Journal, 2008, 688, 190-197.	4.5	38
234	Evidence for Nonhydrostatic Gas Motions in the Hot Interstellar Medium of Centaurus A. Astrophysical Journal, 2008, 677, L97-L100.	4.5	21

#	Article	IF	CITATIONS
235	XMMâ€NewtonObservations of the Nuclei of the Radio Galaxies 3C 305, DA 240, and 4C 73.08. Astrophysical Journal, 2008, 688, 844-851.	4.5	14
236	A Transient Black Hole Low-Mass X-Ray Binary Candidate in Centaurus A. Astrophysical Journal, 2008, 677, L27-L30.	4.5	21
237	<i>Chandra</i> Reveals Twin Xâ€Ray Jets in the Powerful FR II Radio Galaxy 3C 353. Astrophysical Journal, 2008, 685, 839-857.	4.5	35
238	The Interaction between Radio Lobes and Hot Gas in the Nearby Radio Galaxies 3C 285 and 3C 442A. Astrophysical Journal, 2007, 662, 166-181.	4.5	34
239	New Results on Particle Acceleration in the Centaurus A Jet and Counterjet from a Deep <i>Chandra</i> Observation. Astrophysical Journal, 2007, 670, L81-L84.	4.5	74
240	Xâ€Ray Constraints on Galaxyâ€Gasâ€Jet Interactions in the Dumbbell Galaxies NGC 4782 and NGC 4783 in the LGG 316 Galaxy Group. Astrophysical Journal, 2007, 664, 804-819.	4.5	12
241	The Effect of a Chandra -measured Merger-related Gas Component on the Lobes of a Dead Radio Galaxy. Astrophysical Journal, 2007, 658, L79-L82.	4.5	15
242	A <i>Chandra</i> Study of Particle Acceleration in the Multiple Hot Spots of Nearby Radio Galaxies. Astrophysical Journal, 2007, 669, 893-904.	4.5	61
243	Shock Heating in the Nearby Radio Galaxy NGC 3801. Astrophysical Journal, 2007, 660, 191-199.	4.5	60
244	Low-Mass X-Ray Binaries and Globular Clusters in Centaurus A. Astrophysical Journal, 2007, 671, L117-L120.	4.5	42
245	A Radio through Xâ€Ray Study of the Hot Spots, Active Nucleus, and Environment of the Nearby FR II Radio Galaxy 3C 33. Astrophysical Journal, 2007, 659, 1008-1021.	4.5	34
246	A <i>Chandra</i> Study of the Lobe/Interstellar Medium Interactions around the Inner Radio Lobes of Centaurus A: Constraints on the Temperature Structure and Transport Processes. Astrophysical Journal, 2007, 665, 1129-1137.	4.5	40
247	The Disturbed 17 keV Cluster Associated with the Radio Galaxy 3C 438. Astrophysical Journal, 2007, 664, L83-L86.	4.5	6
248	Active galactic nuclei heating in the centres of galaxy groups: a statistical study. Monthly Notices of the Royal Astronomical Society, 2007, 376, 193-204.	4.4	43
249	Hot and cold gas accretion and feedback in radio-loud active galaxies. Monthly Notices of the Royal Astronomical Society, 2007, 376, 1849-1856.	4.4	337
250	Shock Heating by Nearby AGN. , 2007, , 95-100.		0
251	TheChandra, Hubble Space Telescope, and VLA View of the Circumnuclear Extended Emission in the Narrow Emission Line Galaxy NGC 2110. Astrophysical Journal, 2006, 653, 1121-1128.	4.5	32
252	The Hot Gas Environment of the Radio Galaxy 3C 388: Quenching the Accumulation of Cool Gas in a Cluster Core by a Nuclear Outburst. Astrophysical Journal, 2006, 639, 753-760.	4.5	21

#	Article	IF	CITATIONS
253	The Complex Xâ∈Ray Morphology of NGC 7618: A Major Groupâ∈Group Merger in the Local Universe?. Astrophysical Journal, 2006, 640, 762-767.	4.5	21
254	ChandraandXMMâ€NewtonObservations of a Sample of Lowâ€Redshift FR I and FR II Radio Galaxy Nuclei. Astrophysical Journal, 2006, 642, 96-112.	4.5	160
255	The infrared jet in Centaurus A: multiwavelength constraints on emission mechanisms and particle acceleration. Monthly Notices of the Royal Astronomical Society: Letters, 2006, 368, L15-L19.	3.3	40
256	High-redshift Faranoff-Riley type II radio galaxies: X-ray properties of the cores. Monthly Notices of the Royal Astronomical Society, 2006, 366, 339-352.	4.4	49
257	Testing the beamed inverse-Compton model for jet X-ray emission: velocity structure and deceleration. Monthly Notices of the Royal Astronomical Society, 2006, 366, 1465-1474.	4.4	57
258	Jet speeds in wide-angle tailed radio galaxies. Monthly Notices of the Royal Astronomical Society, 2006, 368, 609-618.	4.4	36
259	The X-ray nuclei of intermediate-redshift radio sources. Monthly Notices of the Royal Astronomical Society, 2006, 370, 1893-1904.	4.4	158
260	High-resolution observations of radio sources with 0.6 $<$ z $<$ = 1.0. Monthly Notices of the Royal Astronomical Society, 2006, 372, 113-135.	4.4	32
261	A relativistic model of the radio jets in 3C 296. Monthly Notices of the Royal Astronomical Society, 2006, 372, 510-536.	4.4	46
262	An Xâ€Ray Study of Magnetic Field Strengths and Particle Content in the Lobes of FR II Radio Sources. Astrophysical Journal, 2005, 626, 733-747.	4.5	261
263	AChandraStudy of the Multicomponent Xâ€Ray Emission from the Xâ€shaped Radio Galaxy 3C 403. Astrophysical Journal, 2005, 622, 149-159.	4.5	124
264	Jets, hotspots and lobes: what X-ray observations tell us about extragalactic radio sources. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2005, 363, 2711-2727.	3.4	7
265	A Chandra observation of the X-ray environment and jet of 3C 296. Monthly Notices of the Royal Astronomical Society, 2005, 358, 843-850.	4.4	33
266	Interactions of radio galaxies and the intracluster medium in Abell 160 and Abell 2462. Monthly Notices of the Royal Astronomical Society, 2005, 358, 1394-1404.	4.4	14
267	Chandra and XMM-Newton observations of NGC 6251. Monthly Notices of the Royal Astronomical Society, 2005, 359, 363-382.	4.4	58
268	AChandraandXMM-Newtonstudy of the wide-angle tail radio galaxy $3C\hat{a} \in f465$. Monthly Notices of the Royal Astronomical Society, 2005, 359, 1007-1021.	4.4	55
269	The cool wake around 4C 34.16 as seen byXMM-Newton. Monthly Notices of the Royal Astronomical Society, 2005, 360, 1069-1076.	4.4	14
270	The Chandra view of extended X-ray emission from Pictor A. Monthly Notices of the Royal Astronomical Society, 2005, 363, 649-660.	4.4	53

#	Article	IF	CITATIONS
271	Low-frequency constraints on the spectra of the lobes of the microquasar GRS 1758–258. Astronomy and Astrophysics, 2005, 434, 35-39.	5.1	12
272	The relationship between the X-ray and radio components in the compact steep-spectrum quasar 3C 48. Monthly Notices of the Royal Astronomical Society, 2004, 347, 632-644.	4.4	23
273	The properties of Lyman break galaxies atzâ^¼ 5. Monthly Notices of the Royal Astronomical Society, 2004, 347, L7-L12.	4.4	33
274	Jet termination in wide-angle tail radio sources. Monthly Notices of the Royal Astronomical Society, 2004, 349, 560-575.	4.4	41
275	High-resolution observations of a complete sample of 27 FR II radio galaxies and quasars with 0.3 <z 0.6.="" 2004,="" 351,="" 845-890.<="" <="" astronomical="" monthly="" notices="" of="" royal="" society,="" td="" the=""><td>4.4</td><td>45</td></z>	4.4	45
276	XMM–Newton observations of three high-redshift radio galaxies. Monthly Notices of the Royal Astronomical Society, 2004, 352, 924-938.	4.4	28
277	X-ray emission from the nuclei, lobes and hot-gas environments of two FR II radio galaxies. Monthly Notices of the Royal Astronomical Society, 2004, 353, 879-889.	4.4	80
278	Particle acceleration and jet dynamics in Centaurus A. Nuclear Physics, Section B, Proceedings Supplements, 2004, 132, 116-121.	0.4	2
279	Interactions of low-power radio galaxies with their hot-gas environments. Nuclear Physics, Section B, Proceedings Supplements, 2004, 132, 165-168.	0.4	2
280	The Origins of Xâ€Ray Emission from the Hot Spots of FR II Radio Sources. Astrophysical Journal, 2004, 612, 729-748.	4.5	146
281	\$vec B\$\$_{sfsl gg}\$ revisited: The environments of low-excitation radio galaxies and unified models. Astronomy and Astrophysics, 2004, 414, 927-929.	5.1	29
282	An all-sky optical catalogue of radio/X-ray sources. Astronomy and Astrophysics, 2004, 427, 387-392.	5.1	36
283	ChandraandXMMâ€NewtonObservations of the Nucleus of Centaurus A. Astrophysical Journal, 2004, 612, 786-796.	4.5	90
284	High resolution X-ray observation and monitoring of the X-ray jet and radio lobes of centaurus A. New Astronomy Reviews, 2003, 47, 625-628.	12.8	3
285	Physical conditions in hotspots—what the new data are telling us. New Astronomy Reviews, 2003, 47, 649-652.	12.8	4
286	Unifying B2 radio galaxies with BL Lacertae objects. Monthly Notices of the Royal Astronomical Society, 2003, 338, 176-188.	4.4	24
287	Probing the extended emission-line region in 3C 171 with high-frequency radio polarimetry. Monthly Notices of the Royal Astronomical Society, 2003, 339, 360-366.	4.4	9
288	The X-ray jet and central structure of the active galaxy NGC 315. Monthly Notices of the Royal Astronomical Society, 2003, 343, L73-L78.	4.4	49

#	Article	IF	CITATIONS
289	XMM-Newtonobservations of the hot-gas atmospheres of 3C 66B and 3C 449. Monthly Notices of the Royal Astronomical Society, 2003, 346, 1041-1054.	4.4	63
290	Radio and Xâ€Ray Observations of the Jet in Centaurus A. Astrophysical Journal, 2003, 593, 169-183.	4.5	184
291	Xâ€Ray Emission from the Hot Interstellar Medium and Southwest Radio Lobe of the Nearby Radio Galaxy Centaurus A. Astrophysical Journal, 2003, 592, 129-146.	4.5	138
292	Magnetic Field Strengths in the Hot Spots and Lobes of Three Powerful Fanaroffâ€Riley Type II Radio Sources. Astrophysical Journal, 2002, 581, 948-973.	4.5	135
293	ChandraObservations of the Xâ€Ray Jet in Centaurus A. Astrophysical Journal, 2002, 569, 54-71.	4.5	100
294	A Chandra observation of the X-ray environment and jet of 3C 31. Monthly Notices of the Royal Astronomical Society, 2002, 334, 182-192.	4.4	124
295	The X-ray jet and halo of PKS 0521â^365. Monthly Notices of the Royal Astronomical Society, 2002, 335, 142-150.	4.4	42
296	Xâ∈Ray Detection of the Inner Jet in the Radio Galaxy M84. Astrophysical Journal, 2002, 580, 110-113.	4.5	25
297	85-GHz BIMA observations of the double-hotspot radio galaxy 3C20. Monthly Notices of the Royal Astronomical Society, 2001, 320, 355-364.	4.4	10
298	A Chandra detection of the radio hotspot of 3C 123. Monthly Notices of the Royal Astronomical Society, 2001, 323, L17-L22.	4.4	50
299	Chandra measurements of the X-ray core and cluster of 3C 220.1. Monthly Notices of the Royal Astronomical Society, 2001, 326, 1127-1133.	4.4	32
300	Chandrafinds that X-ray jets are common in low-power radio galaxies. Monthly Notices of the Royal Astronomical Society, 2001, 326, L7-L12.	4.4	103
301	Chandraobservations of the X-ray jet in 3C 66B. Monthly Notices of the Royal Astronomical Society, 2001, 326, 1499-1507.	4.4	124
302	An optical inverse-Compton hotspot in 3C 196?. Astronomy and Astrophysics, 2001, 373, 881-885.	5.1	18
303	Spectral Structure in FR II Radio Galaxies and Jets. Astrophysical Journal, 2001, 561, 691-702.	4.5	16
304	[ITAL]Chandra[/ITAL] Detection of the Radio and Optical Double Hot Spot of 3C 351. Astrophysical Journal, 2001, 561, L157-L160.	4.5	24
305	Extended X-Ray Emission Around Radio-Loud Quasars. , 2001, , 127-132.		0
306	Radio, optical and X-ray nuclei in nearby 3CRR radio galaxies. Monthly Notices of the Royal Astronomical Society, 2000, 314, 359-363.	4.4	67

#	Article	IF	CITATIONS
307	The infrared jet in 3C 66B. Monthly Notices of the Royal Astronomical Society, 2000, 317, 623-629.	4.4	16
308	The environments of FRII radio sources. Monthly Notices of the Royal Astronomical Society, 2000, 319, 562-572.	4.4	49
309	The environments of FRII radio sources. Monthly Notices of the Royal Astronomical Society, 2000, 319, 562-572.	4.4	31
310	Subarcsecond Imaging of 3C 123: 108 GHz Continuum Observations of the Radio Hot Spots. Astrophysical Journal, 2000, 534, 172-179.	4.5	16
311	[ITAL]Chandra[/ITAL] X-Ray Detection of the Radio Hot Spots of 3C 295. Astrophysical Journal, 2000, 530, L81-L84.	4.5	78
312	FR II radio galaxies with z $<$ 0.3 – II. Beaming and unification. Monthly Notices of the Royal Astronomical Society, 1999, 304, 135-144.	4.4	46
313	Extended X-ray emission from the BL Lac object PKS 0521-365. Monthly Notices of the Royal Astronomical Society, 1999, 305, 246-252.	4.4	9
314	X-ray observations of low-power radio galaxies from the B2 catalogue. Monthly Notices of the Royal Astronomical Society, 1999, 310, 30-38.	4.4	66
315	ROSAT X-ray observations of 3CRR radio sources. Monthly Notices of the Royal Astronomical Society, 1999, 309, 969-990.	4.4	116
316	Intensive monitoring of the strongly variable BL Lac S5 0716+714. Nuclear Physics, Section B, Proceedings Supplements, 1999, 69, 415-418.	0.4	0
317	Dynamics of the radio galaxy 3C 449. Monthly Notices of the Royal Astronomical Society, 1998, 296, 1098-1104.	4.4	43
318	Jets, plumes and hotspots in the wide-angle tail source 3C 130. Monthly Notices of the Royal Astronomical Society, 1998, 298, 569-576.	4.4	18
319	Magnetic field strengths in the hotspots of 3C 33 and 111. Monthly Notices of the Royal Astronomical Society, 1998, 294, 615-621.	4.4	48
320	FRII radio galaxies with z $<$ 0.3 - I. Properties of jets, cores and hotspots. Monthly Notices of the Royal Astronomical Society, 1998, 296, 445-462.	4.4	126
321	Extended and Compact Xâ€Ray Emission from the Powerful Radio Galaxy 3C 220.1. Astrophysical Journal, 1998, 504, 743-748.	4.5	17
322	A VLA Study of 15 3CR Radio Galaxies. Astrophysical Journal, Supplement Series, 1998, 119, 25-39.	7.7	26
323	The jets in 3C 296. Monthly Notices of the Royal Astronomical Society, 1997, 288, L1-L6.	4.4	23
324	A study of FR II radio galaxies with z < 0.15 II. High-resolution maps of 11 sources at 3.6 cm. Monthly Notices of the Royal Astronomical Society, 1997, 291, 20-53.	4.4	139

#	Article	IF	CITATION
325	High-resolution observations at 3.6 cm of seventeen FR II radio galaxies with 0.15 <z< 0.30.="" 1997,="" 288,="" 859-890.<="" astronomical="" monthly="" notices="" of="" royal="" society,="" td="" the=""><td>4.4</td><td>98</td></z<>	4.4	98
326	The jets in 3C 66B. Monthly Notices of the Royal Astronomical Society, 1996, 278, 273-284.	4.4	45
327	Evidence for radio-source heating of groups. Monthly Notices of the Royal Astronomical Society, 0, 357, 279-294.	4.4	70
328	High-redshift Fanaroff-Riley type II radio sources: large-scale X-ray environment. Monthly Notices of the Royal Astronomical Society, 0, 381, 1109-1126.	4.4	54
329	A representative survey of the dynamics and energetics of FRII radio galaxies. Monthly Notices of the Royal Astronomical Society, 0 , , stx189.	4.4	49
330	A 1D fluid model of the CentaurusÂA jet. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	5
331	Low-frequency observations of the Giant Radio Galaxy NGCÂ6251. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	8