Yann Le Coq

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9201867/publications.pdf

Version: 2024-02-01

51	2,825 citations	218677 26 h-index	289244 40 g-index
papers	citations	n-index	g-index
51 all docs	51 docs citations	51 times ranked	1793 citing authors

#	Article	IF	CITATIONS
1	Sr Lattice Clock at $1\text{\AA}-10\text{sup}\text{\^{a}}\in\text{``16}\text{sup}\text{Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock. Science, 2008, 319, 1805-1808.}$	12.6	500
2	Photonic microwave signals with zeptosecond-level absolute timing noise. Nature Photonics, 2017, 11, 44-47.	31.4	260
3	Experimental realization of an optical second with strontium lattice clocks. Nature Communications, 2013, 4, 2109.	12.8	192
4	Ultrastable lasers based on vibration insensitive cavities. Physical Review A, 2009, 79, .	2.5	187
5	Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock. Applied Physics Letters, 2009, 94, .	3.3	151
6	Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation. Optics Letters, 2011, 36, 3654.	3.3	128
7	Quantum cascade laser frequency stabilization at the sub-Hz level. Nature Photonics, 2015, 9, 456-460.	31.4	120
8	Ultra-low-noise microwave extraction from fiber-based optical frequency comb. Optics Letters, 2009, 34, 3707.	3.3	118
9	Spectral purity transfer between optical wavelengths at the 10â^'18 level. Nature Photonics, 2014, 8, 219-223.	31.4	96
10	Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation. Applied Physics B: Lasers and Optics, 2012, 106, 301-308.	2.2	89
11	Neutral Atom Frequency Reference in the Deep Ultraviolet with <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext mathvariant="normal">Fractional DoppleriFige Spectroscopy of thexmml:math xmlns:mml="http7//wwwl:w3.org/1998/Måth/MathMtö><mml:msup< td=""><td>7.8 >><mml:mr< td=""><td>76 n>10</td></mml:mr<></td></mml:msup<></mml:mtext></mml:math>	7.8 >> <mml:mr< td=""><td>76 n>10</td></mml:mr<>	76 n>10
12	display="inline"> <mml:mmultiscripts><mml:mi>S</mml:mi><mml:mn>O</mml:mn><mml:none></mml:none><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mn>1</mml:mn></mml:mmultiscripts> <mml:mtext mathvariant="normal">â^²</mml:mtext> <mml:mmultiscripts><mml:mi>P</mml:mi><mml:mn>O</mml:mn><mml></mml><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mn>3</mml:mn></mml:mmultiscripts> <td></td> <td>75</td>		75
13	Clock Transition in Laser-Cooled Fermionic Isotopes of Neutral Mercury. Physical Review Letters, 2008 Accuracy evaluation of an optical lattice clock with bosonic atoms. Optics Letters, 2007, 32, 1812.	3.3	74
14	Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock. Metrologia, 2016, 53, 1123-1130.	1.2	74
15	Atom Laser Divergence. Physical Review Letters, 2001, 87, 170403.	7.8	67
16	Beam Quality of a Nonideal Atom Laser. Physical Review Letters, 2006, 96, 070404.	7.8	65
17	Sub-100 attoseconds stability optics-to-microwave synchronization. Applied Physics Letters, 2010, 96, .	3.3	65
18	Kilohertz-Resolution Spectroscopy of Cold Atoms with an Optical Frequency Comb. Physical Review Letters, 2006, 97, 163905.	7.8	45

#	Article	IF	CITATIONS
19	Characterizing a fiber-based frequency comb with electro-optic modulator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 432-438.	3.0	42
20	An ultra-stable referenced interrogation system in the deep ultraviolet for a mercury optical lattice clock. Applied Physics B: Lasers and Optics, 2010, 99, 41-46.	2.2	38
21	Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomic-physics experiments. Review of Scientific Instruments, 2006, 77, 033105.	1.3	32
22	Atomic fountains and optical clocks at SYRTE: Status and perspectives. Comptes Rendus Physique, 2015, 16, 461-470.	0.9	31
23	Theoretical tools for atom-laser-beam propagation. Physical Review A, 2008, 77, .	2.5	29
24	Mid-infrared laser phase-locking to a remote near-infrared frequency reference for high-precision molecular spectroscopy. New Journal of Physics, 2013, 15, 073003.	2.9	29
25	Accurate control of optoelectronic amplitude to phase noise conversion in photodetection of ultra-fast optical pulses. Optics Express, 2017, 25, 12268.	3.4	29
26	Coherent matter wave inertial sensors for precision measurements in space. Applied Physics B: Lasers and Optics, 2006, 84, 627-632.	2.2	27
27	Advanced noise reduction techniques for ultra-low phase noise optical-to-microwave division with femtosecond fiber combs. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 900-908.	3.0	26
28	Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals. Optics Express, 2017, 25, 15539.	3.4	25
29	Laser locking to the ^199Hg ^1S_0 â^' ^3P_0 clock transition with 54 \tilde{A} — 10^â^'15/✓ \tilde{I} ,, fractional frequency instability. Optics Letters, 2012, 37, 3477.	3.3	23
30	Dispersive coupling between light and a rare-earth-ion–doped mechanical resonator. Physical Review A, 2016, 94, .	2.5	19
31	Dual photo-detector system for low phase noise microwave generation with femtosecond lasers. Optics Letters, 2014, 39, 1204.	3.3	15
32	Mechanical Tunability of an Ultranarrow Spectral Feature of a Rare-Earth-Doped Crystal via Uniaxial Stress. Physical Review Applied, 2020, 13, .	3.8	12
33	Double-heterodyne probing for an ultra-stable laser based on spectral hole burning in a rare-earth-doped crystal. Optics Letters, 2020, 45, 1930.	3.3	11
34	Rapid cooling of a strain-coupled oscillator by an optical phase-shift measurement. Physical Review A, 2019, 100, .	2.5	10
35	Inhomogeneous response of an ion ensemble from mechanical stress. Physical Review Research, 2020, 2, .	3.6	10
36	Measurement of excited-state transitions in cold calcium atoms by direct femtosecond frequency-comb spectroscopy. Physical Review A, 2007, 75, .	2.5	8

#	Article	IF	CITATIONS
37	Partially ferromagnetic electromagnet for trapping and cooling neutral atoms to quantum degeneracy. Review of Scientific Instruments, 2005, 76, 103104.	1.3	6
38	Ultra-stable long distance optical frequency distribution using the Internet fiber network and application to high-precision molecular spectroscopy. Journal of Physics: Conference Series, 2013, 467, 012002.	0.4	6
39	Precision measurements of electric-field-induced frequency displacements of an ultranarrow optical transition in ions in a solid. Applied Physics Letters, 2020, 117, 221102.	3.3	6
40	Multifrequency evaporative cooling to Bose-Einstein condensation in a high magnetic field. Physical Review A, 2000, 62, .	2.5	4
41	Compact Ultra-low-noise Photonic Microwave Synthesizer. , 2018, , .		2
42	Record Ultra-low Phase Noise 12 GHz Signal Generation with a Fiber Optical Frequency Comb and Measurement. , 2016, , .		2
43	Photonic Microwave Oscillator based on an Ultra-stable-laser and an Optical Frequency Comb. , 2021, , .		1
44	Optics to microwave low phase noise frequency division : Synchronization with stability below 100 attoseconds. , 2010 , , .		0
45	Ultra-low noise microwave extraction from fiber-based optical frequency comb. , 2010, , .		0
46	Low phase noise microwave generation with fiber-based femtosecond lasers and applications. , 2011, , .		0
47	Quantum cascade laser stabilization at sub-Hz-level by use of a frequency comb and an optical link. , 2015, , .		0
48	Spectral Hole Burning for Ultra-stable Lasers. , 2021, , .		0
49	Kerr combs bring purity to millimetre waves. Nature Photonics, 2021, 15, 487-488.	31.4	0
50	Optics to microwave synchronisation at sub-100 attoseconds stability level., 2011,,.		0
51	Ultra-low noise microwave signal generation with an optical frequency comb. , $2018, , .$		0